Skip to main content

The Mighty Monitor Trainer for your pytorch models.

Project description

pytorch-mighty

CircleCI Documentation Status

The Mighty Monitor Trainer for your pytorch models. Powered by Visdom.

Documentation: https://pytorch-mighty.readthedocs.io/en/latest/

Installation

Requires Python 3.6+

  1. Install PyTorch:
    • CPU backend: conda install pytorch torchvision cpuonly -c pytorch
    • GPU backend: conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
  2. $ pip install pytorch-mighty

Quick start

Before running any script, start Visdom server:

$ python -m visdom.server -port 8097

Then run python examples.py or use the code below:

import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.datasets import MNIST

from mighty.models import MLP
from mighty.monitor.monitor import MonitorLevel
from mighty.trainer import TrainerGrad
from mighty.utils.data import DataLoader

model = MLP(784, 128, 10)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)

data_loader = DataLoader(MNIST, transform=transforms.ToTensor())

trainer = TrainerGrad(model,
                      criterion=nn.CrossEntropyLoss(),
                      data_loader=data_loader,
                      optimizer=optimizer,
                      scheduler=scheduler)
# trainer.restore()  # uncomment to restore the saved state
trainer.monitor.advanced_monitoring(level=MonitorLevel.SIGNAL_TO_NOISE)
trainer.train(n_epochs=10, mutual_info_layers=0)

Finally, navigate to http://localhost:8097 to see the training progress.

Articles, implemented or reused in the package

  1. Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation.

  2. Belghazi, M. I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., & Hjelm, R. D. (2018). Mine: mutual information neural estimation.

  3. Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information.

  4. Ince, R. A., Giordano, B. L., Kayser, C., Rousselet, G. A., Gross, J., & Schyns, P. G. (2017). A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula. Human brain mapping, 38(3), 1541-1573.

  5. IDTxl package to estimate mutual information.

Projects that use pytorch-mighty

  • MCMC_BinaryNet - Markov Chain Monte Carlo binary networks optimization.
  • EmbedderSDR - encode images into binary Sparse Distributed Representation (SDR).
  • sparse-representation - Basis Pursuit solvers for the P0- and P1-problems, which encode the data into sparse vectors of high dimensionality.
  • entropy-estimators - estimate Entropy and Mutual Information between multivariate random variables.

Check-out more examples on http://visdom.kyivaigroup.com:8097/. Give your browser a few minutes to parse the json data.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-mighty-0.4.0.tar.gz (72.4 kB view details)

Uploaded Source

Built Distribution

pytorch_mighty-0.4.0-py3-none-any.whl (79.1 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-mighty-0.4.0.tar.gz.

File metadata

  • Download URL: pytorch-mighty-0.4.0.tar.gz
  • Upload date:
  • Size: 72.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for pytorch-mighty-0.4.0.tar.gz
Algorithm Hash digest
SHA256 00fdb89bf1a215fed157e9ba2dbdc2e15610d21455b3f20e73c0a24d3b079de9
MD5 03cdb35ad9876ed76e0416b813aef26e
BLAKE2b-256 3e12dc7f1b204561c606692e95797966b7334778a529b453d3b7607bda1d3bcc

See more details on using hashes here.

Provenance

File details

Details for the file pytorch_mighty-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_mighty-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bf3bdf291396136a25b64de12e5581a97d4048a40d8f67d2f7d08f616fe990f7
MD5 1271db4fd6a395d3e34ab788b98a0182
BLAKE2b-256 a3fba142887b1a8cfc182bdedf57aa9f1908a0c2f0dbff847f08e0772bc70e21

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page