Skip to main content

World timezone definitions, modern and historical

Project description

Author:

Stuart Bishop <stuart@stuartbishop.net>

Introduction

pytz brings the Olson tz database into Python. This library allows accurate and cross platform timezone calculations using Python 2.3 or higher. It also solves the issue of ambiguous times at the end of daylight savings, which you can read more about in the Python Library Reference (datetime.tzinfo).

Amost all of the Olson timezones are supported.

Note that this library differs from the documented Python API for tzinfo implementations; if you want to create local wallclock times you need to use the localize() method documented in this document. In addition, if you perform date arithmetic on local times that cross DST boundaries, the results may be in an incorrect timezone (ie. subtract 1 minute from 2002-10-27 1:00 EST and you get 2002-10-27 0:59 EST instead of the correct 2002-10-27 1:59 EDT). A normalize() method is provided to correct this. Unfortunatly these issues cannot be resolved without modifying the Python datetime implementation.

Installation

This package can either be installed from a .egg file using setuptools, or from the tarball using the standard Python distutils.

If you are installing from a tarball, run the following command as an administrative user:

python setup.py install

If you are installing using setuptools, you don’t even need to download anything as the latest version will be downloaded for you from the Python package index:

easy_install --upgrade pytz

If you already have the .egg file, you can use that too:

easy_install pytz-2008g-py2.6.egg

Example & Usage

>>> from datetime import datetime, timedelta
>>> from pytz import timezone
>>> import pytz
>>> utc = pytz.utc
>>> utc.zone
'UTC'
>>> eastern = timezone('US/Eastern')
>>> eastern.zone
'US/Eastern'
>>> amsterdam = timezone('Europe/Amsterdam')
>>> fmt = '%Y-%m-%d %H:%M:%S %Z%z'

This library only supports two ways of building a localized time. The first is to use the .localize() method provided by the pytz library. This is used to localize a naive datetime (datetime with no timezone information):

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 6, 0, 0))
>>> print loc_dt.strftime(fmt)
2002-10-27 06:00:00 EST-0500

The second way of building a localized time is by converting an existing localized time using the standard .astimezone() method:

>>> ams_dt = loc_dt.astimezone(amsterdam)
>>> ams_dt.strftime(fmt)
'2002-10-27 12:00:00 CET+0100'

Unfortunately using the tzinfo argument of the standard datetime constructors ‘’does not work’’ with pytz for many timezones.

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=amsterdam).strftime(fmt)
'2002-10-27 12:00:00 AMT+0020'

It is safe for timezones without daylight savings trasitions though, such as UTC:

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=pytz.utc).strftime(fmt)
'2002-10-27 12:00:00 UTC+0000'

The preferred way of dealing with times is to always work in UTC, converting to localtime only when generating output to be read by humans.

>>> utc_dt = datetime(2002, 10, 27, 6, 0, 0, tzinfo=utc)
>>> loc_dt = utc_dt.astimezone(eastern)
>>> loc_dt.strftime(fmt)
'2002-10-27 01:00:00 EST-0500'

This library also allows you to do date arithmetic using local times, although it is more complicated than working in UTC as you need to use the normalize method to handle daylight savings time and other timezone transitions. In this example, loc_dt is set to the instant when daylight savings time ends in the US/Eastern timezone.

>>> before = loc_dt - timedelta(minutes=10)
>>> before.strftime(fmt)
'2002-10-27 00:50:00 EST-0500'
>>> eastern.normalize(before).strftime(fmt)
'2002-10-27 01:50:00 EDT-0400'
>>> after = eastern.normalize(before + timedelta(minutes=20))
>>> after.strftime(fmt)
'2002-10-27 01:10:00 EST-0500'

Creating localtimes is also tricky, and the reason why working with local times is not recommended. Unfortunately, you cannot just pass a ‘tzinfo’ argument when constructing a datetime (see the next section for more details)

>>> dt = datetime(2002, 10, 27, 1, 30, 0)
>>> dt1 = eastern.localize(dt, is_dst=True)
>>> dt1.strftime(fmt)
'2002-10-27 01:30:00 EDT-0400'
>>> dt2 = eastern.localize(dt, is_dst=False)
>>> dt2.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

Converting between timezones also needs special attention. This also needs to use the normalize method to ensure the conversion is correct.

>>> utc_dt = utc.localize(datetime.utcfromtimestamp(1143408899))
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = au_tz.normalize(utc_dt.astimezone(au_tz))
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 EST+1100'
>>> utc_dt2 = utc.normalize(au_dt.astimezone(utc))
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'

You can take shortcuts when dealing with the UTC side of timezone conversions. Normalize and localize are not really necessary when there are no daylight savings time transitions to deal with.

>>> utc_dt = datetime.utcfromtimestamp(1143408899).replace(tzinfo=utc)
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = au_tz.normalize(utc_dt.astimezone(au_tz))
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 EST+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'

Problems with Localtime

The major problem we have to deal with is that certain datetimes may occur twice in a year. For example, in the US/Eastern timezone on the last Sunday morning in October, the following sequence happens:

  • 01:00 EDT occurs

  • 1 hour later, instead of 2:00am the clock is turned back 1 hour and 01:00 happens again (this time 01:00 EST)

In fact, every instant between 01:00 and 02:00 occurs twice. This means that if you try and create a time in the US/Eastern timezone using the standard datetime syntax, there is no way to specify if you meant before of after the end-of-daylight-savings-time transition.

>>> loc_dt = datetime(2002, 10, 27, 1, 30, 00, tzinfo=eastern)
>>> loc_dt.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

As you can see, the system has chosen one for you and there is a 50% chance of it being out by one hour. For some applications, this does not matter. However, if you are trying to schedule meetings with people in different timezones or analyze log files it is not acceptable.

The best and simplest solution is to stick with using UTC. The pytz package encourages using UTC for internal timezone representation by including a special UTC implementation based on the standard Python reference implementation in the Python documentation. This timezone unpickles to be the same instance, and pickles to a relatively small size. The UTC implementation can be obtained as pytz.utc, pytz.UTC, or pytz.timezone(‘UTC’).

>>> import pickle, pytz
>>> dt = datetime(2005, 3, 1, 14, 13, 21, tzinfo=utc)
>>> naive = dt.replace(tzinfo=None)
>>> p = pickle.dumps(dt, 1)
>>> naive_p = pickle.dumps(naive, 1)
>>> len(p), len(naive_p), len(p) - len(naive_p)
(60, 43, 17)
>>> new = pickle.loads(p)
>>> new == dt
True
>>> new is dt
False
>>> new.tzinfo is dt.tzinfo
True
>>> pytz.utc is pytz.UTC is pytz.timezone('UTC')
True

Note that this instance is not the same instance (or implementation) as other timezones with the same meaning (GMT, Greenwich, Universal, etc.).

>>> utc is pytz.timezone('GMT')
False

If you insist on working with local times, this library provides a facility for constructing them unambiguously:

>>> loc_dt = datetime(2002, 10, 27, 1, 30, 00)
>>> est_dt = eastern.localize(loc_dt, is_dst=True)
>>> edt_dt = eastern.localize(loc_dt, is_dst=False)
>>> print est_dt.strftime(fmt), '/', edt_dt.strftime(fmt)
2002-10-27 01:30:00 EDT-0400 / 2002-10-27 01:30:00 EST-0500

If you pass None as the is_dst flag to localize(), pytz will refuse to guess and raise exceptions if you try to build ambiguous or non-existent times.

For example, 1:30am on 27th Oct 2002 happened twice in the US/Eastern timezone when the clocks where put back at the end of Daylight Savings Time:

>>> eastern.localize(datetime(2002, 10, 27, 1, 30, 00), is_dst=None)
Traceback (most recent call last):
...
AmbiguousTimeError: 2002-10-27 01:30:00

Similarly, 2:30am on 7th April 2002 never happened at all in the US/Eastern timezone, as the clock where put forward at 2:00am skipping the entire hour:

>>> eastern.localize(datetime(2002, 4, 7, 2, 30, 00), is_dst=None)
Traceback (most recent call last):
...
NonExistentTimeError: 2002-04-07 02:30:00

Both of these exceptions share a common base class to make error handling easier:

>>> isinstance(pytz.AmbiguousTimeError(), pytz.InvalidTimeError)
True
>>> isinstance(pytz.NonExistentTimeError(), pytz.InvalidTimeError)
True

Although localize() handles many cases, it is still not possible to handle all. In cases where countries change their timezone definitions, cases like the end-of-daylight-savings-time occur with no way of resolving the ambiguity. For example, in 1915 Warsaw switched from Warsaw time to Central European time. So at the stroke of midnight on August 5th 1915 the clocks were wound back 24 minutes creating an ambiguous time period that cannot be specified without referring to the timezone abbreviation or the actual UTC offset. In this case midnight happened twice, neither time during a daylight savings time period:

>>> warsaw = pytz.timezone('Europe/Warsaw')
>>> loc_dt1 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=False)
>>> loc_dt1.strftime(fmt)
'1915-08-04 23:59:59 WMT+0124'
>>> loc_dt2 = warsaw.localize(datetime(1915, 8, 5, 00, 00, 00), is_dst=False)
>>> loc_dt2.strftime(fmt)
'1915-08-05 00:00:00 CET+0100'
>>> str(loc_dt2 - loc_dt1)
'0:24:01'

The only way of creating a time during the missing 24 minutes is converting from another time - because neither of the timezones involved where in daylight savings mode the API simply provides no way to express it:

>>> utc_dt = datetime(1915, 8, 4, 22, 36, tzinfo=pytz.utc)
>>> utc_dt.astimezone(warsaw).strftime(fmt)
'1915-08-04 23:36:00 CET+0100'

The ‘Standard’ Python way of handling all these ambiguities is not to, such as demonstrated in this example using the US/Eastern timezone definition from the Python documentation (Note that this implementation only works for dates between 1987 and 2006 - it is included for tests only!):

>>> from pytz.reference import Eastern # pytz.reference only for tests
>>> dt = datetime(2002, 10, 27, 0, 30, tzinfo=Eastern)
>>> str(dt)
'2002-10-27 00:30:00-04:00'
>>> str(dt + timedelta(hours=1))
'2002-10-27 01:30:00-05:00'
>>> str(dt + timedelta(hours=2))
'2002-10-27 02:30:00-05:00'
>>> str(dt + timedelta(hours=3))
'2002-10-27 03:30:00-05:00'

Notice the first two results? At first glance you might think they are correct, but taking the UTC offset into account you find that they are actually two hours appart instead of the 1 hour we asked for.

>>> from pytz.reference import UTC # pytz.reference only for tests
>>> str(dt.astimezone(UTC))
'2002-10-27 04:30:00+00:00'
>>> str((dt + timedelta(hours=1)).astimezone(UTC))
'2002-10-27 06:30:00+00:00'

Country Information

A mechanism is provided to access the timezones commonly in use for a particular country, looked up using the ISO 3166 country code. It returns a list of strings that can be used to retrieve the relevant tzinfo instance using pytz.timezone():

>>> pytz.country_timezones['nz']
['Pacific/Auckland', 'Pacific/Chatham']

The Olson database comes with a ISO 3166 country code to English country name mapping that pytz exposes as a dictionary:

>>> pytz.country_names['nz']
'New Zealand'

What is UTC

UTC is Universal Time, also known as Greenwich Mean Time or GMT in the United Kingdom. All other timezones are given as offsets from UTC. No daylight savings time occurs in UTC, making it a useful timezone to perform date arithmetic without worrying about the confusion and ambiguities caused by daylight savings time transitions, your country changing its timezone, or mobile computers that move roam through multiple timezones.

Helpers

There are two lists of timezones provided.

all_timezones is the exhaustive list of the timezone names that can be used.

>>> from pytz import all_timezones
>>> len(all_timezones) >= 500
True
>>> 'Etc/Greenwich' in all_timezones
True

common_timezones is a list of useful, current timezones. It doesn’t contain deprecated zones or historical zones, except for a few I’ve deemed in common usage, such as US/Eastern (open a bug report if you think other timezones are deserving of being included here).It is also a sequence of strings.

>>> from pytz import common_timezones
>>> len(common_timezones) < len(all_timezones)
True
>>> 'Etc/Greenwich' in common_timezones
False
>>> 'US/Eastern' in common_timezones
True
>>> 'Australia/Melbourne' in common_timezones
True
>>> 'US/Pacific-New' in all_timezones
True
>>> 'US/Pacific-New' in common_timezones
False

Both common_timezones and all_timezones are alphabetically sorted:

>>> common_timezones_dupe = common_timezones[:]
>>> common_timezones_dupe.sort()
>>> common_timezones == common_timezones_dupe
True
>>> all_timezones_dupe = all_timezones[:]
>>> all_timezones_dupe.sort()
>>> all_timezones == all_timezones_dupe
True

all_timezones and common_timezones are also available as sets.

>>> from pytz import all_timezones_set, common_timezones_set
>>> 'US/Eastern' in all_timezones_set
True
>>> 'US/Eastern' in common_timezones_set
True
>>> 'Australia/Victoria' in common_timezones_set
False

You can also retrieve lists of timezones used by particular countries using the country_timezones() method. It requires an ISO-3166 two letter country code.

>>> from pytz import country_timezones
>>> country_timezones('ch')
['Europe/Zurich']
>>> country_timezones('CH')
['Europe/Zurich']

License

MIT license.

This code is also available as part of Zope 3 under the Zope Public License, Version 2.1 (ZPL).

I’m happy to relicense this code if necessary for inclusion in other open source projects.

Latest Versions

This package will be updated after releases of the Olson timezone database. The latest version can be downloaded from the Python Package Index (PyPI). The code that is used to generate this distribution is hosted on launchpad.net and available using the Bazaar revision control system using:

bzr branch lp:pytz

Bugs, Feature Requests & Patches

Bugs can be reported using Launchpad at https://bugs.launchpad.net/products/pytz

Issues & Limitations

  • Offsets from UTC are rounded to the nearest whole minute, so timezones such as Europe/Amsterdam pre 1937 will be up to 30 seconds out. This is a limitation of the Python datetime library.

  • If you think a timezone definition is incorrect, I probably can’t fix it. pytz is a direct translation of the Olson timezone database, and changes to the timezone definitions need to be made to this source. If you find errors they should be reported to the time zone mailing list, linked from http://www.twinsun.com/tz/tz-link.htm

Further Reading

More info than you want to know about timezones: http://www.twinsun.com/tz/tz-link.htm

Contact

Stuart Bishop <stuart@stuartbishop.net>

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

pytz-2009n.zip (523.2 kB view details)

Uploaded Source

pytz-2009n.tar.gz (254.6 kB view details)

Uploaded Source

pytz-2009n.tar.bz2 (175.5 kB view details)

Uploaded Source

Built Distributions

pytz-2009n-py2.6.egg (509.4 kB view details)

Uploaded Source

pytz-2009n-py2.5.egg (509.5 kB view details)

Uploaded Source

pytz-2009n-py2.4.egg (509.8 kB view details)

Uploaded Source

pytz-2009n-py2.3.egg (1.0 MB view details)

Uploaded Source

File details

Details for the file pytz-2009n.zip.

File metadata

  • Download URL: pytz-2009n.zip
  • Upload date:
  • Size: 523.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2009n.zip
Algorithm Hash digest
SHA256 26b4116d3e8619cd6917f2faf8a249868b246dea4595998fb4c518edf4d8d920
MD5 14aa992386905c99159cf9237a1e1247
BLAKE2b-256 f8929d191a76a87d2608cb5dc6c496cf9739dfd49048a63fd3a6d39051b6f7a6

See more details on using hashes here.

File details

Details for the file pytz-2009n.tar.gz.

File metadata

  • Download URL: pytz-2009n.tar.gz
  • Upload date:
  • Size: 254.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2009n.tar.gz
Algorithm Hash digest
SHA256 fc5080681bb00ddadbcda1c5e7bbd3937d5cc918e948687bdacd246b5c14cfde
MD5 1406aa5ca5a8be71970734aaef072445
BLAKE2b-256 2a38ec91abc41768cef990534fb687f80f88a826eab6e3866926bd77d23d2bfc

See more details on using hashes here.

File details

Details for the file pytz-2009n.tar.bz2.

File metadata

  • Download URL: pytz-2009n.tar.bz2
  • Upload date:
  • Size: 175.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2009n.tar.bz2
Algorithm Hash digest
SHA256 64400921afd1ed6650c7dfe23bfbd8dc40d9b0bc22f572530db1fe0defc6f340
MD5 7f069d7221bbe0a580c2300677e204ce
BLAKE2b-256 829cccd2197555563134ea5d52f3a6a7a3d9cc34eaeaff283037cbe1d7f56947

See more details on using hashes here.

File details

Details for the file pytz-2009n-py2.6.egg.

File metadata

  • Download URL: pytz-2009n-py2.6.egg
  • Upload date:
  • Size: 509.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2009n-py2.6.egg
Algorithm Hash digest
SHA256 d2890b753a1c6f50a97cdff4e3a0fe3e127d6c419fa33dd0c61c9352fde6f1bc
MD5 333288f6ac6a957be775dc888d0eaae5
BLAKE2b-256 fd9060b7a262a39099fd207da4d8cd3f4fd3143e5b40e5c1479bc55d3d2e9c7c

See more details on using hashes here.

File details

Details for the file pytz-2009n-py2.5.egg.

File metadata

  • Download URL: pytz-2009n-py2.5.egg
  • Upload date:
  • Size: 509.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2009n-py2.5.egg
Algorithm Hash digest
SHA256 3ac1acf962b0c34531bb9942ca0c992507db89a661aab057ad52a7f87d41395b
MD5 468386d8450a5630a66e4e3ca3928a26
BLAKE2b-256 da0311c8436b1c20e2b65a6e09fac494ff1fc4a8dab2aa512d1c7da03a7f7820

See more details on using hashes here.

File details

Details for the file pytz-2009n-py2.4.egg.

File metadata

  • Download URL: pytz-2009n-py2.4.egg
  • Upload date:
  • Size: 509.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2009n-py2.4.egg
Algorithm Hash digest
SHA256 12b11ff582dd76175d87e60c61b2eeb78b0f36dc529842f33b57fbff6c6fe108
MD5 917cecc027bbc5ba73495abadf578c8d
BLAKE2b-256 3de4b40216455881fd895b5bc40c08d810b441257b9a6d227d375ea205ab9270

See more details on using hashes here.

File details

Details for the file pytz-2009n-py2.3.egg.

File metadata

  • Download URL: pytz-2009n-py2.3.egg
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2009n-py2.3.egg
Algorithm Hash digest
SHA256 71db41ba62992eaae8c711bdc321a26c16e553b7c221fc7dc73331fbf9953523
MD5 49a418f0747fc241c69a2ef53b2713bc
BLAKE2b-256 0e818997c79f780308fe2a79bffdc30f797ec256be279abcd957289fbc8c8d31

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page