Skip to main content

Python bindings and extensions for Velox

Project description

PyVelox: Python bindings and extensions for Velox

This library is currently in Alpha stage and does not have a stable release. The API and implementation may change based on user feedback or performance. Future changes may not be backward compatible. If you have suggestions on the API or use cases you'd like to be covered, please open a GitHub issue. We'd love to hear thoughts and feedback.

Prerequisites

You will need Python 3.7 or later. Also, we highly recommend installing an Miniconda environment.

First, set up an environment. If you are using conda, create a conda environment:

conda create --name pyveloxenv python=3.7
conda activate pyveloxenv

Install PyVelox

You can install PyVelox from pypi without the need to build it from source as we provide wheels for Linux and macOS (x86_64):

pip install pyvelox

From Source

You will need Python 3.7 or later and a C++17 compiler to build PyVelox from source.

Install Dependencies

On macOS

HomeBrew is required to install development tools on macOS. Run the script referenced here to install all the mac specific dependencies.

On Linux Run the script referenced here to install on linux.

Build PyVelox

For local development, you can build with debug mode:

make python-build

And run unit tests with

make python-test

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyvelox-0.0.1a1697.tar.gz (9.4 MB view details)

Uploaded Source

Built Distributions

pyvelox-0.0.1a1697-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyvelox-0.0.1a1697-cp311-cp311-macosx_10_15_x86_64.whl (31.9 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

pyvelox-0.0.1a1697-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyvelox-0.0.1a1697-cp310-cp310-macosx_10_15_x86_64.whl (31.9 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pyvelox-0.0.1a1697-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyvelox-0.0.1a1697-cp39-cp39-macosx_10_15_x86_64.whl (31.9 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pyvelox-0.0.1a1697-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyvelox-0.0.1a1697-cp38-cp38-macosx_10_15_x86_64.whl (31.9 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

pyvelox-0.0.1a1697-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyvelox-0.0.1a1697-cp37-cp37m-macosx_10_15_x86_64.whl (31.9 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file pyvelox-0.0.1a1697.tar.gz.

File metadata

  • Download URL: pyvelox-0.0.1a1697.tar.gz
  • Upload date:
  • Size: 9.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyvelox-0.0.1a1697.tar.gz
Algorithm Hash digest
SHA256 2ee6164824c274b5865cff48c22b545f23d8e19e81a66b72929dbc503c93fc9c
MD5 5d4a5c2e33808d493e88c874ccc1a737
BLAKE2b-256 2b5329e738b34d730cbd54482d1b1306edcf2865ce161cee2de4ef2fc5d391dd

See more details on using hashes here.

File details

Details for the file pyvelox-0.0.1a1697-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyvelox-0.0.1a1697-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e7c906a4aa928f5bb4fc775f02f269ceffda9cdc935720a971c169f9d7efed5
MD5 f02161cadd298cd9538b574aad7213d2
BLAKE2b-256 f405a1300f03eae6deb15d5c8e4f91006c7b8f70c615ae738e9221cda949ee54

See more details on using hashes here.

File details

Details for the file pyvelox-0.0.1a1697-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyvelox-0.0.1a1697-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4654e8fd5697100fe5d6acae03f376817ffed599b2bd5ac5ee7aa3ec20436c5a
MD5 f49f60718121480f6d557134e59bcc2f
BLAKE2b-256 50a9652cfcb3d3ce186a6600cb7af385cd5e2991b252e2c8a39972827fe8185d

See more details on using hashes here.

File details

Details for the file pyvelox-0.0.1a1697-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyvelox-0.0.1a1697-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cac6909b9d8536931e7ee97fc026e92c05510a01dec624ddb10f0b49b7278d49
MD5 430881f8c4ac29229e2b0de3c237d39b
BLAKE2b-256 6a33536b7e9103035daf661bd4349f2b0d5d0e92a66c287434c40a54ace6e4b8

See more details on using hashes here.

File details

Details for the file pyvelox-0.0.1a1697-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyvelox-0.0.1a1697-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d5e595863823e87288e4a86424501d49c20416260d4d709f51e176cd3b04b1e7
MD5 b96ebce66139e07904567f47f24f1408
BLAKE2b-256 00b627d1d6c5f9074be2275cab258f4478337223d9a19214bea3faee80aca51b

See more details on using hashes here.

File details

Details for the file pyvelox-0.0.1a1697-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyvelox-0.0.1a1697-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 07b2029b0920dfd5a00fdd2dee98504b7ae95356c9f001f130dc35e4453538f1
MD5 4afafcb1cc17e8be1662f28595ec4984
BLAKE2b-256 91799b85d3d1f644fa204dfc3ff5435fa3ba632b305df7dccf04f30e48b44d61

See more details on using hashes here.

File details

Details for the file pyvelox-0.0.1a1697-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyvelox-0.0.1a1697-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f7247a8e994d251e5056e8bed9323e4bd98f4a1ee40ff83485c2a77bfcf91ef0
MD5 cad7f0a8f4059f597ab6ee4e74dcc2ef
BLAKE2b-256 e0b42ddc77d02c4afd3d66b0732d66fac2cd548f4f5384f34e58b1c1af3dae38

See more details on using hashes here.

File details

Details for the file pyvelox-0.0.1a1697-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyvelox-0.0.1a1697-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5f00b01fac13ce652dbc11b47d78e6a65bb9d5ae96de5b33b51350b73353cf8
MD5 ff768810bb9e64de7272471620a9c7ef
BLAKE2b-256 387905b3622986cf6dd5d2e4fe6d6d2adbed982c7dc96686160fcca36b6690e7

See more details on using hashes here.

File details

Details for the file pyvelox-0.0.1a1697-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyvelox-0.0.1a1697-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2714907eb8922eb93287ca82b49d248dadca16d1790c764b70cba571c246ed9a
MD5 deb7e76517d7c43d5413d755530cc236
BLAKE2b-256 4a59c6b01166acabd04b2b26abdfebdb6236df56e778df6bfc3a68d77005c6b6

See more details on using hashes here.

File details

Details for the file pyvelox-0.0.1a1697-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyvelox-0.0.1a1697-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 266368902fdefb872f7993827946d92d98dacb651155e5f75886a832396493f7
MD5 c0ddb46eba65d1ed593fa2c1293c6aca
BLAKE2b-256 12bad7f107ac4a3aa0aa69897c2a4e3132e69a6ee8d6d724ce1fa3310396eb69

See more details on using hashes here.

File details

Details for the file pyvelox-0.0.1a1697-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyvelox-0.0.1a1697-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e86209a7af60c7003a3193386f00d8e894e2d3a6f8b72b2c2aac431c424503f1
MD5 9c4f0970258c90676bd33fd3b4091b41
BLAKE2b-256 020b007a63bcfba4a016e375e004eb5f1fd934d6156af8d64bf84d4a4350018c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page