Skip to main content

Python bindings for VHACD

Project description

Python bindings for VHACD

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyVHACD-0.0.2.tar.gz (4.2 kB view details)

Uploaded Source

Built Distributions

pyVHACD-0.0.2-pp39-pypy39_pp73-win_amd64.whl (123.2 kB view details)

Uploaded PyPy Windows x86-64

pyVHACD-0.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (185.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyVHACD-0.0.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (200.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyVHACD-0.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (143.1 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyVHACD-0.0.2-pp38-pypy38_pp73-win_amd64.whl (123.2 kB view details)

Uploaded PyPy Windows x86-64

pyVHACD-0.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (185.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyVHACD-0.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (200.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyVHACD-0.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (143.1 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyVHACD-0.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (186.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyVHACD-0.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (201.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyVHACD-0.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (143.1 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyVHACD-0.0.2-cp311-cp311-win_amd64.whl (122.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyVHACD-0.0.2-cp311-cp311-win32.whl (109.2 kB view details)

Uploaded CPython 3.11 Windows x86

pyVHACD-0.0.2-cp311-cp311-musllinux_1_1_x86_64.whl (711.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyVHACD-0.0.2-cp311-cp311-musllinux_1_1_i686.whl (777.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyVHACD-0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (198.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyVHACD-0.0.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (215.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyVHACD-0.0.2-cp311-cp311-macosx_10_9_x86_64.whl (148.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyVHACD-0.0.2-cp311-cp311-macosx_10_9_universal2.whl (282.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pyVHACD-0.0.2-cp310-cp310-win_amd64.whl (122.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyVHACD-0.0.2-cp310-cp310-win32.whl (109.3 kB view details)

Uploaded CPython 3.10 Windows x86

pyVHACD-0.0.2-cp310-cp310-musllinux_1_1_x86_64.whl (711.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyVHACD-0.0.2-cp310-cp310-musllinux_1_1_i686.whl (777.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyVHACD-0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (198.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyVHACD-0.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (215.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyVHACD-0.0.2-cp310-cp310-macosx_10_9_x86_64.whl (148.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyVHACD-0.0.2-cp310-cp310-macosx_10_9_universal2.whl (282.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyVHACD-0.0.2-cp39-cp39-win_amd64.whl (122.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyVHACD-0.0.2-cp39-cp39-win32.whl (109.3 kB view details)

Uploaded CPython 3.9 Windows x86

pyVHACD-0.0.2-cp39-cp39-musllinux_1_1_x86_64.whl (711.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyVHACD-0.0.2-cp39-cp39-musllinux_1_1_i686.whl (777.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyVHACD-0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (198.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyVHACD-0.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (215.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyVHACD-0.0.2-cp39-cp39-macosx_10_9_x86_64.whl (148.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyVHACD-0.0.2-cp39-cp39-macosx_10_9_universal2.whl (282.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyVHACD-0.0.2-cp38-cp38-win_amd64.whl (122.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyVHACD-0.0.2-cp38-cp38-win32.whl (109.3 kB view details)

Uploaded CPython 3.8 Windows x86

pyVHACD-0.0.2-cp38-cp38-musllinux_1_1_x86_64.whl (710.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyVHACD-0.0.2-cp38-cp38-musllinux_1_1_i686.whl (777.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyVHACD-0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (197.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyVHACD-0.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (215.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyVHACD-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl (148.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyVHACD-0.0.2-cp38-cp38-macosx_10_9_universal2.whl (282.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyVHACD-0.0.2-cp37-cp37m-win_amd64.whl (122.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyVHACD-0.0.2-cp37-cp37m-win32.whl (109.9 kB view details)

Uploaded CPython 3.7m Windows x86

pyVHACD-0.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl (712.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyVHACD-0.0.2-cp37-cp37m-musllinux_1_1_i686.whl (778.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyVHACD-0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (198.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyVHACD-0.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (216.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pyVHACD-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl (148.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyVHACD-0.0.2-cp36-cp36m-win_amd64.whl (130.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyVHACD-0.0.2-cp36-cp36m-win32.whl (115.8 kB view details)

Uploaded CPython 3.6m Windows x86

pyVHACD-0.0.2-cp36-cp36m-musllinux_1_1_x86_64.whl (712.4 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyVHACD-0.0.2-cp36-cp36m-musllinux_1_1_i686.whl (778.4 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyVHACD-0.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (198.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyVHACD-0.0.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (216.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

pyVHACD-0.0.2-cp36-cp36m-macosx_10_9_x86_64.whl (148.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyVHACD-0.0.2.tar.gz.

File metadata

  • Download URL: pyVHACD-0.0.2.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2.tar.gz
Algorithm Hash digest
SHA256 27fb3bd4c564bca86f77b86e12c961980a838e19e1682bf3a7e66aac6e4529d6
MD5 e02c8f2aa99663efc572d35874c6bcb2
BLAKE2b-256 772542419121debc7dc468d0cdd5f58c36af9a6f831e284c47840abe173e0fbf

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 79da819a3ca5678237976e6bddcce6f02dc905bdc0f6c49e78373f12d24e4e7a
MD5 b9bbe35b4fd878582a43d945f1c1019e
BLAKE2b-256 2bcc0f36a9f43029a4a1edc2b2ff8392692b714bc25ec92db80b476cb3edbf19

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a55c58ef9b82716d249ee3b2dbdb566fbfe1bedcd00e1e1a421b06caa3ef91c
MD5 26650ff73885a229519041f7ccd15d4f
BLAKE2b-256 dedbbea3d360583c1cda7e3da9bb9a58f141fe5e187c111aa3e3834a64303e32

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 926153504bd5b427f352e58412744c47aa3c12fa66a82c529e61a4429f5f46c2
MD5 9bf5bb6db77aa7db4c78b2ec68381cbf
BLAKE2b-256 55c398facae8a0b2f4ad4ea2dd2a966d0448647fbbd654807d7cd497a370219f

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac76db7ef8b78f97e855f422b91d619ef497fb0e0174a43b7769c9b0bbbcef49
MD5 6c50aa1f86781a51e23457b436a01729
BLAKE2b-256 3ca04a56436528627855ba3595eace63ad22a036b69200b8e28a01d3d5461368

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4abbfd91db1e8db0be8e1c237c8f397e3d101313873c4cdf16bfd5d4b2fceef0
MD5 1158a9bdb35e06be16e836319805de05
BLAKE2b-256 cd1f9e7676717c4bf4508c09d44e30e57738413ebbf4f73ac4af876fdc3ccbbb

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15bd5646b89620ff712147c45b7476d360537f827636040c43b4002e69089f20
MD5 c69fae513f96baedffffc505ddc54090
BLAKE2b-256 9dae7a99c62fb11a39c3a6a67e838e14f1694a50ca7ea8d942c0386d4e807c76

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 03c70d0b5156207fde28052ab2ad259f99d7dfeadc33e047422db7ff99dcef66
MD5 ee579a094a58e48d0972ae80c9a5bfc7
BLAKE2b-256 4099ebcb7352c98efb9dc3d043ab9600b146588d9517d6300fad09bdb1549576

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 707e1103d3acbc2f603f196a6de01b8e58817ce242aeb5073751aab8f8cdda3a
MD5 938c5acbc8ab9d632a554a88e52e06e1
BLAKE2b-256 ac4d62dbb9164fb71a27f0ab7801c9b85014e98e3f042de53f147ca5f6790058

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c7b5d0fd5f2e089f22e6bc1c627cef2f6321eebd421182b1b65d19d943b84c5
MD5 fcd165d039df141857321d22d9ac8a91
BLAKE2b-256 93d5dd36d85ad0029455c150f863f231fd867e82d4f9d7f15bff2c0e3b7517c6

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9f9a17a37708891de646d10d98791dbcaef39f2ed4e330e3e02d82c168f4cace
MD5 de0798d4a3878f053360f119c8a201d4
BLAKE2b-256 97c62e28247a4f7921ee22a5459db3b3b2eff12cf2d8a32531bd69179dcd0a31

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c16fe428b2b5dbc35f4ab0c677aa96c27529859d6fc5ba11d078c7ac0af3d01b
MD5 8b70daf9e7904fcf5b292ef3b70b0a5a
BLAKE2b-256 7b521ae5936552445a2f3ec6e75cae1307ce48efd5cd6aaa56c2200028824bdb

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 122.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 513b82674d7c11bd66af84115a152d178168fddd8b8d6e6f8401f820d16ded18
MD5 d09e2683d0f9924c896ff67552c5bc4b
BLAKE2b-256 fc52c42827ea10f4382e1d50d49bfa02c6fc894418c63512a8eacc0824f70a46

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 109.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a008804ad522b7de632cbd8dfed515e6749cb7bfa9f090db2662bf7953d1ad81
MD5 f208162b574486b32e722bd75ca46629
BLAKE2b-256 fdef3507097c9f2fa26c4a77213000973e0be1391515a84d8c4be98dd1abd08c

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 67e382c297d6943e3a660034e46ca531bc2eef818cd4f6aaabdd7f53b70d94f9
MD5 9dd67d9192097eed2db3ccfd423c391b
BLAKE2b-256 c9d2e3f046ad37f5a34a11f9b17163b0f7871e81a1627c24f3defa3529ba9a7e

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ee24a646fa5ae9db8c6d2e9c46acacd5421bc10a35de05b14fc51b2faf880374
MD5 05771238e9d9bc930c291d7385a5033e
BLAKE2b-256 85d8e5a58ea62cbc730b855d20120d0e9e89d9515dc761ef312c2ce13f7318b0

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c8d0cd2da092f8408d6df994ec84b6a892e94a00dd5623b74132d7b6dda4645
MD5 1d25a4cc3a28322f5bac6949ca5ace9f
BLAKE2b-256 ef7e7fc9eaae2f4453d02f348952a6288960228d7916dbedd9177e539a24b033

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 65bf6a23adb369839ae0d41ca9618cc2afe3fb4b3270d40f8f8fd4f7afe3fde5
MD5 1b1e5fdb4bb14bbc0af4613b90f66e3b
BLAKE2b-256 d091a430d1d78d2a3f87a10d1d46b0438fe44c28d5c8722ebbe4c4b8557fb26d

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b24398e352c7085ea013951f4861211b02c585e5a8e38c1baaca2119a12b0322
MD5 debd761da9ba0369dacce340e8a110c6
BLAKE2b-256 934c00bbf0c7d929f91e092cb33fe55939e7bb1ca3729ee585bef4994505fbf1

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7029bbe576305e4b5b0eaaf86ba3b33b9c778dd8b6e290759088de84de8867a0
MD5 63ff3de6a315048f53e31c0bf080cbec
BLAKE2b-256 02c5f2b2f139a7829582a5d830522fbc39e3247273882ceda9a05068eafe1607

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 122.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0416870f36adaab375d453428d4f5a34e5716b2325317323169f51ddff6e64f5
MD5 641577af7eeb3fcaf937f5df49d49105
BLAKE2b-256 4fc62f79e0e0ab17e3febf60300bc168c3f3404619a0d39eb3fc36f5b65b0e01

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 109.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a6abd3b76082d2fa4ba6db5ca3805e410344f83edf9f11e5c24626bf796d27d3
MD5 2f8be325196cd5b2327c457a4fdd9a6e
BLAKE2b-256 c50e77d2b3fe50b8360c134c808d7dab155efccb1091c89cef49796aabb7cfe8

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8eb38bf1cdce0b2236eae6ad210f3c7982c8031a6498049d3231ef21179ed3bb
MD5 4f26eb48da370ebf47c20879866d5c62
BLAKE2b-256 022cb14a722af1bf4ef4c62f2080840be7f9c75237b9aa9e9826b7d97b661878

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ad083785b1ae78a3254402433e4b5b74c0a0a4655bfa9fd31a256604015ba547
MD5 ed2db847639e2f42fb53ddb7e916a8d1
BLAKE2b-256 bae697e72223121a78866528c6fdf6537f8a946fae0e46ae51127648226f371b

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f50626734170f8681d1a82856ff25304fb5eafc99804f007ea3fa374e55d9b85
MD5 1c7d28998f2acc5af3831cb2c4cde30d
BLAKE2b-256 99f08d721345bbb4b4ca9d7b70dd7a284b3a6732a0ba6fad396c5ddaac80dc0f

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f4592a794eec1134889ca2e3068257fa2048501952ad76f1dc6fd2b06a72a7d8
MD5 5231b78e9940a6a91f425305a9abfb26
BLAKE2b-256 1997485b8e0c3f90a2fae96311bf7957488061791bf35d6ed51fa15a46e51afe

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 57425ce7f7879391f79fbf1da30a25d7442009719d98ac0c33c20353c25ae2ee
MD5 ef95fcecf18b8b0702c49458d5faa036
BLAKE2b-256 67671c869f39c7ab508c34739919aa6b17fe37512a9c50f0a257c1601a5e1e83

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 20e2b1f305da236fe734974d135cf24b5e1754dca340434aeaf054ffe1fc9b5d
MD5 58f5c547c7c5d2ccc8f986939d55f148
BLAKE2b-256 90c33961dd4f2ff379c5c8b066f3c788d3b80f65ca507f290e0d0dad08613517

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 122.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 614d7b916f2f12b81224b935a81c94f25632a495f65fdbbf5cfbdcfab8f1f917
MD5 104bc4a3975fa4bd9db2301e326f9802
BLAKE2b-256 1d332c60c03a2786b4aa546f21f50588216c710be987895131e1e69887ab8745

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 109.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 30a706a214b6cc685cb4a23e84bb05cc92096ba3045fd83143d46c015b5aa799
MD5 e02141e2fb0c5b7330193a7629cb0f64
BLAKE2b-256 985e644a3031e1505fd66472ce9a718ae6f4e41e5a4a7a2c8d424614c76a6fcb

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7d3992e3d860ef4de0720ed8504088f1fd95868b1c04397aebe29b6dfa6bb24e
MD5 9f85e591a37126b178adb264df6597c3
BLAKE2b-256 23dcae875fe458f4e96ff1639abea49662669cfbcfadc2388ee6e1c4df061b38

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b117552c1fbb12b0d1825be6e9e81201e7a6afa84805927aba21e60f792f8d52
MD5 1bd28bc65b023a70dd35664fcff992ca
BLAKE2b-256 253db60bc15f10d651727b6ddbf89707b2e489b2a045c4b44937c8a8442f3b59

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 400ff8245e7e4c64ff176f79053a0b6471f97a67715e581577df93b5988ca5ec
MD5 b1ea1ef951ce4fd071489c2571bd6eb5
BLAKE2b-256 afb7f67ab3d6636c0a647fbddafd8264a53520842025ceb3945143c511147353

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 00a123d5712f06d06b65b1a4470d6810f18447c169ae806ab6b49c84a12f8a4f
MD5 292a96299449f5f1f39a89121efcf01e
BLAKE2b-256 3733dd41862e5458c588a93ce81dd1fe74d73871ab2b2f932f3ec7d20594e9ba

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa4d549418b28182a5cdfcd152842d5bc830f87104542b48b8e4ae8cb20289bb
MD5 94e266392a1805ad65866a0be3e297ae
BLAKE2b-256 9375ccdd4652c1760cd14db78afaa1b0b3434ea7b5e29944a1159295ce9349fa

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5e7b4d1952ef221e05d2aea1fe265d0e62dc3096bf9bbd85510824885f813b87
MD5 1d9af3bb32aef1157f20c60cd0890b63
BLAKE2b-256 a13b1f9fa55f425df467b02effa8e1db4997db0b02498abf6352758049a3d330

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 122.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6b089be9004704a5cdc1e3742cec021f46f83c0fbdecd3d855dd261689e6e623
MD5 934a1974160e012ab275ab2c52093257
BLAKE2b-256 602c147e5aa04e500d14ee3d98d7410d0356d805a2df40487ad2c081494f7815

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 109.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ce600cef71d5cd98a437ca279e3610c426a55ba3653b5316f2774b6e195f0c91
MD5 99755ce2740f0c69a0dfa1155ddb2a55
BLAKE2b-256 c67aad3f513ec7906e46b8a28052caed9923f173a4c93135e6bac5112a084d4b

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f09443ee60ce514e55869287e7e65d32eb5531dc50ded2b5923240de3b281180
MD5 60b9f6a35855b23017de6af3e70eee15
BLAKE2b-256 c9c080a902ea70c084d93fc93293474bd4555294fb67659b33ce697b316d771e

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1ac23f3188a8944a40e2e09b1220e459a5f2eda06368ba1d8229c417bcd5738d
MD5 e44043e7f422910e1363e02c1fabcf67
BLAKE2b-256 31dbe683f844b02ddf189858e21abe1c0ad01df2a098bb8e8f722016a94832b7

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c145384331f3120ed3a66b85c936f9078bbc8a55cd9ef48159581ddb7473e16
MD5 579cf361396e73399b0991473729ab51
BLAKE2b-256 cb31e17dc9bdeb8f4553de503c0da3d487be77acab66f929c8f175686dbf105f

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 edbf05318b1c1195f306c3b017ae94d1270581ddbb5ec8ce3be19eb05633ad9e
MD5 c38e84d28d82795d9fd9c203148192a5
BLAKE2b-256 366ba1b016901137a15efdda2e9a178889ce0e8c2136d3d4938bcf148fd2b1e8

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a84ea6dcaf75473562fa52fa386a3f12eeb48d44ceff49b24e9dbaaec4e07a08
MD5 6a252a9fb450af7b52d997e958c4ccd9
BLAKE2b-256 ed2dc34e44fa51021fbb5d58b24ae834914bd43b1032ad1f4c87cd1e1601b603

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 135bd2505f600dfa7f0f1ea2498c6df879e6173ada1b643adbe7505888ecf0b6
MD5 04b30233d96137cab44d932a2d515469
BLAKE2b-256 37f8052318114eeae086e743e95bc0733b1da8a70a257cc340e07bccc796dacd

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 122.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 54a052056d50d65de6d914df67a41637553db40c7ba5f09fff50e13e73668bc8
MD5 ca5889cba95b491bf18f2ef6ae8c60e3
BLAKE2b-256 bbbbd3149408807775b44abb72e6098dfd7cbb839724fe2978c91b9fe4c22572

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 109.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4cdf1c02c139712bccc850670b80d744476c0de17d5ebcd9ef24c6018d735d0a
MD5 591715e992425dcca5e6e201c6db2f92
BLAKE2b-256 e15bf2448392f8d6288e42c64a68fd796c81656f1e08228bbfbcd17c7d9b8ec5

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 37eec70a8c0b58b4bb88b642677dd7189d69be11f9f5759a17a96489ea8898d7
MD5 b707d4291f3ee95dc584d1572b4891c3
BLAKE2b-256 fc4229e487ef8870372b7aaffaba1fe816ab5312c8787161dba240e9d98d80a1

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dc79dad102a9f5a197941b1ed9d2135f97979bed5e0c37302b297107a0faf593
MD5 525fcc85b9f8bf1ab5085f9aa64ac844
BLAKE2b-256 f8306646977d85794bfaa783ea4d8e7546233567cbdd01c70bd2d8ad622a1ecc

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15054dd4a0ac323cb8735b2e24fab5d203313e22ca4209a8a0274f5a0b547529
MD5 593bab15d9da24607afc759a03c6db58
BLAKE2b-256 3c494d8beca55ba15564de8c91d179dec50cba7d21f92755208d87674c6ed80c

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9f37c58ecce8fd80a6fb1316e941a7b91df3caced6984a1288fad68da15f4c1a
MD5 2bbe4c1e97d76000bf0ddf740a0137f5
BLAKE2b-256 b374c141747aeb99d4752dfae7e9b994661cd09e75dd01b3faad46f5e58295af

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d8183600daedba2c9fe075e42a0d11043da60b446d2ecb6e0ead55a2d0dc7fc
MD5 6bba8ff0902f8d9d005a8ff90da0d856
BLAKE2b-256 fabfb48eb521a2f2a24b8937b57f8901b6babb271793d755cdca0d0153e27a6d

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 130.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6cc12f57a32d0a8570ea1e4bc5366ef7f6514746ec2293536fdc5e0125b770f1
MD5 a750ff5a9a454ce4ccd03c012e6738ec
BLAKE2b-256 ce087855ebdad948af8e887bb901c310756594ff4f425346d14d1ec2c8c2e45a

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyVHACD-0.0.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 115.8 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyVHACD-0.0.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 2e77de2ba60dd625926921ecc37017960938660bde24b22a1601216e906b4683
MD5 69325ebf48bbb91cf8f1529e3ea9504f
BLAKE2b-256 a8a127dce3be75f79b078845b2b6bec88749977f5723612a6b34214000aa9dce

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 abef86cc6a48414c941e59cb57b4fffcfb3d4fb2d43f3a67edb6d08e1c3dd999
MD5 dbc47c0a1bea4343927c19d81689b6ad
BLAKE2b-256 31e2720143839ffc67203371c9a260b68f34a9a5ae5ab6b66532ff3c91980c02

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ceb5c56eab0505628d2914591b93e642a7a0397d84c1d29ed464fac819282a14
MD5 81adc0d57978b7b29b1793e4a3fe92a8
BLAKE2b-256 25d4bd12377db2fd5d3f97876226c234e251cf5515b7ba7feed62147ea765a3c

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69df48a1cd02f14f079c1c684d65e83a1b53753487d4d74f6f13f7effedb23d6
MD5 b29f61aba71cf22b437f7305689793fd
BLAKE2b-256 fbdabf37b5b925f23e604b717d7973852aa2af6fbb41331cb200e1bfdd8f89f9

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 73992b1dda3020c8f6157f91eb27003d14555a9021f8505ac39d893ae783669c
MD5 7ea21ded22507bd13394e30eebdf29c5
BLAKE2b-256 0bec899229c98257c4d9c7951230cb28760fa87a2d7f18d64d975125a6d4b611

See more details on using hashes here.

File details

Details for the file pyVHACD-0.0.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyVHACD-0.0.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e63b60ce5a891bc218aa2a1c9e3c95673ada37757c90f9e59d8439daf70cddcb
MD5 3563f1cf428b359ce962124949bb1969
BLAKE2b-256 d2698a6614d852fb93a46df05f6a248456bbc1299f533d2fa2bc947a77dddede

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page