Python bindings for viewercloud
Project description
pyviewercloud
pyviewercloud are the bindings to use viewercloud directly in python.
Viewercloud
is a library and also a cli to read and display Pointcloud.
It was initially used to display KITTI pointcloud.
However it was also tested on the Lyft Level 5 Dataset pointcloud.
It will also be able to display the 3D annotations and the 3D BoundingBox computed by your favorite algorithm.
Viewercloud will open a openGL window to display the pointcloud. Press q
to close.
It can also take a screen shot of the current view to save as png. Press s
take screenshot.
Python Usage
You can install pyviewercloud
the python bindings to viewercloud
thanks to Pyo3 and Pyo3-numpy
poetry add pyviewercloud
pip install pyviewercloud
import numpy as np
import pyviewercloud as pyviewer
# Create a new viewer with a window size 1200x1800.
viewer = pyviewer.PointcloudViewer(1200, 1800, 15000)
# Load some pointcloud from the lyft perception dataset
# Currently only support pointcloud as numpy.ndarray Nx3 in np.float32
lyft_point_cloud_1 = np.fromfile("tests/data/lyft/host-a101_lidar0_1241893239502712366.bin", dtype=np.float32).reshape((-1, 5))[:,:3]
lyft_point_cloud_2= np.fromfile("tests/data/lyft/host-a101_lidar1_1241893239502712366.bin", dtype=np.float32).reshape((-1, 5))[:,:3]
lyft_point_cloud_3= np.fromfile("tests/data/lyft/host-a101_lidar2_1241893239502712366.bin", dtype=np.float32).reshape((-1, 5))[:,:3]
# Add them one by one to the viewer to have different color
viewer.add_pointcloud(lyft_point_cloud_1, [255, 0, 0])
viewer.add_pointcloud(lyft_point_cloud_2, [0, 0, 255])
viewer.add_pointcloud(lyft_point_cloud_3, [0, 255, 0])
# You can now display the window
viewer.show()
import numpy as np
import pyviewercloud as pyviewer
# Create a new viewer with a window size 1200x1800.
viewer = pyviewer.PointcloudViewer(1200, 1800, 15000)
# Load some pointcloud from the kitti dataset
kitti_point_cloud = np.fromfile("tests/data/kitti/velodyne/000001.bin", dtype=np.float32).reshape((-1, 4))[:,:3]
viewer.add_pointcloud(kitti_point_cloud, [255, 255, 255])
# Add some centroids to have the same color.
# Currently only support centroids as numpy.ndarray Nx3 in np.float32
centroids = np.array([[-11.5,0,-0.8]]).astype(np.float32)
viewer.add_centroid(centroids, [255, 0, 0])
viewer.show()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file pyviewercloud-0.2.1-cp39-cp39-macosx_10_7_x86_64.whl
.
File metadata
- Download URL: pyviewercloud-0.2.1-cp39-cp39-macosx_10_7_x86_64.whl
- Upload date:
- Size: 610.1 kB
- Tags: CPython 3.9, macOS 10.7+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 10bb8bbb1137514e9f64fa572f79d4459c85c58e42fb4899a51432ecbb77128c |
|
MD5 | dd7695ca6bcd19e4091e13b6897f513d |
|
BLAKE2b-256 | 35f754890ff9b1798c639a524500706684db0cfeb016011f6a42ea7628e28bd4 |
File details
Details for the file pyviewercloud-0.2.1-cp38-cp38-manylinux1_x86_64.whl
.
File metadata
- Download URL: pyviewercloud-0.2.1-cp38-cp38-manylinux1_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a33fd2cf718f2d643f00485a78550a0a1b76b502719e5b1ec425ee10af33edd9 |
|
MD5 | 67080411b74f2c446ef63736f6d3c54a |
|
BLAKE2b-256 | 943efb1b4a1e0094baab952fce4a17ff41f697db2b407d187ade9fbd3260d800 |
File details
Details for the file pyviewercloud-0.2.1-cp38-cp38-macosx_10_7_x86_64.whl
.
File metadata
- Download URL: pyviewercloud-0.2.1-cp38-cp38-macosx_10_7_x86_64.whl
- Upload date:
- Size: 610.1 kB
- Tags: CPython 3.8, macOS 10.7+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7a344ffac0957e96670abed4cb798698b44b68ddfa81338691361401a8482ddd |
|
MD5 | 5df5725119b1771a4c1db66c6071005a |
|
BLAKE2b-256 | 2685b3564c30d2a58662f57da5fe05f08984f10adc42bd7a6f1a3aa1517dfc7d |
File details
Details for the file pyviewercloud-0.2.1-cp37-cp37m-macosx_10_7_x86_64.whl
.
File metadata
- Download URL: pyviewercloud-0.2.1-cp37-cp37m-macosx_10_7_x86_64.whl
- Upload date:
- Size: 610.1 kB
- Tags: CPython 3.7m, macOS 10.7+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e163b51967a27b1c97dc6a96ef19019076736d906af4a0c96d2755bd77e873b1 |
|
MD5 | ef1ecafab83d0b88ea7ac228bc3bdc04 |
|
BLAKE2b-256 | f08c2ae750bebe54a72af2998163e5356053112f3eae5c8448f8fd1a839a0907 |
File details
Details for the file pyviewercloud-0.2.1-cp36-cp36m-manylinux1_x86_64.whl
.
File metadata
- Download URL: pyviewercloud-0.2.1-cp36-cp36m-manylinux1_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 445721c61b1a10a388dc1d5505f540c7bccbb440f6f53e2dd97967d99da7d246 |
|
MD5 | 46a843c13807ed205467626b7183228f |
|
BLAKE2b-256 | b63d6ad1f7725824f1c9e91b35d0c6e52c41a9a009746fa79da0185d026bc7a0 |
File details
Details for the file pyviewercloud-0.2.1-cp36-cp36m-macosx_10_7_x86_64.whl
.
File metadata
- Download URL: pyviewercloud-0.2.1-cp36-cp36m-macosx_10_7_x86_64.whl
- Upload date:
- Size: 610.3 kB
- Tags: CPython 3.6m, macOS 10.7+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 430d30d7ba9c32c4b3df96a4f19d5670e6408b5d3ba791ae8ee931f7adcf48bb |
|
MD5 | ddfff2e45279428d832383107b56e655 |
|
BLAKE2b-256 | 99969e4a0e91b749503a1760dc666fc0457251a4ba40fd05d1ed4308c9ba6798 |