Skip to main content

Python bindings for viewercloud

Project description

pyviewercloud

pyviewercloud are the bindings to use viewercloud directly in python.

Viewercloud is a library and also a cli to read and display Pointcloud. It was initially used to display KITTI pointcloud. However it was also tested on the Lyft Level 5 Dataset pointcloud.

It will also be able to display the 3D annotations and the 3D BoundingBox computed by your favorite algorithm.

Viewercloud will open a openGL window to display the pointcloud. Press qto close.

kitti-centroid

It can also take a screen shot of the current view to save as png. Press s take screenshot.

lyft-color

Python Usage

You can install pyviewercloud the python bindings to viewercloud thanks to Pyo3 and Pyo3-numpy

poetry add pyviewercloud
pip install pyviewercloud
import numpy as np
import pyviewercloud as pyviewer

# Create a new viewer with a window size 1200x1800.
viewer = pyviewer.PointcloudViewer(1200, 1800, 15000)

# Load some pointcloud from the lyft perception dataset
# Currently only support pointcloud as numpy.ndarray Nx3 in np.float32
lyft_point_cloud_1 = np.fromfile("tests/data/lyft/host-a101_lidar0_1241893239502712366.bin", dtype=np.float32).reshape((-1, 5))[:,:3]
lyft_point_cloud_2= np.fromfile("tests/data/lyft/host-a101_lidar1_1241893239502712366.bin", dtype=np.float32).reshape((-1, 5))[:,:3]
lyft_point_cloud_3= np.fromfile("tests/data/lyft/host-a101_lidar2_1241893239502712366.bin", dtype=np.float32).reshape((-1, 5))[:,:3]

# Add them one by one to the viewer to have different color
viewer.add_pointcloud(lyft_point_cloud_1, [255, 0, 0])
viewer.add_pointcloud(lyft_point_cloud_2, [0, 0, 255])
viewer.add_pointcloud(lyft_point_cloud_3, [0, 255, 0])

# You can now display the window
viewer.show()
import numpy as np
import pyviewercloud as pyviewer

# Create a new viewer with a window size 1200x1800.
viewer = pyviewer.PointcloudViewer(1200, 1800, 15000)

# Load some pointcloud from the kitti dataset
kitti_point_cloud = np.fromfile("tests/data/kitti/velodyne/000001.bin", dtype=np.float32).reshape((-1, 4))[:,:3]
viewer.add_pointcloud(kitti_point_cloud, [255, 255, 255])

# Add some centroids to have the same color.
# Currently only support centroids as numpy.ndarray Nx3 in np.float32
centroids = np.array([[-11.5,0,-0.8]]).astype(np.float32)
viewer.add_centroid(centroids, [255, 0, 0])
viewer.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyviewercloud-0.2.1-cp39-cp39-macosx_10_7_x86_64.whl (610.1 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pyviewercloud-0.2.1-cp38-cp38-macosx_10_7_x86_64.whl (610.1 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pyviewercloud-0.2.1-cp37-cp37m-macosx_10_7_x86_64.whl (610.1 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

pyviewercloud-0.2.1-cp36-cp36m-manylinux1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m

pyviewercloud-0.2.1-cp36-cp36m-macosx_10_7_x86_64.whl (610.3 kB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file pyviewercloud-0.2.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pyviewercloud-0.2.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 10bb8bbb1137514e9f64fa572f79d4459c85c58e42fb4899a51432ecbb77128c
MD5 dd7695ca6bcd19e4091e13b6897f513d
BLAKE2b-256 35f754890ff9b1798c639a524500706684db0cfeb016011f6a42ea7628e28bd4

See more details on using hashes here.

File details

Details for the file pyviewercloud-0.2.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyviewercloud-0.2.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a33fd2cf718f2d643f00485a78550a0a1b76b502719e5b1ec425ee10af33edd9
MD5 67080411b74f2c446ef63736f6d3c54a
BLAKE2b-256 943efb1b4a1e0094baab952fce4a17ff41f697db2b407d187ade9fbd3260d800

See more details on using hashes here.

File details

Details for the file pyviewercloud-0.2.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pyviewercloud-0.2.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 7a344ffac0957e96670abed4cb798698b44b68ddfa81338691361401a8482ddd
MD5 5df5725119b1771a4c1db66c6071005a
BLAKE2b-256 2685b3564c30d2a58662f57da5fe05f08984f10adc42bd7a6f1a3aa1517dfc7d

See more details on using hashes here.

File details

Details for the file pyviewercloud-0.2.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pyviewercloud-0.2.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e163b51967a27b1c97dc6a96ef19019076736d906af4a0c96d2755bd77e873b1
MD5 ef1ecafab83d0b88ea7ac228bc3bdc04
BLAKE2b-256 f08c2ae750bebe54a72af2998163e5356053112f3eae5c8448f8fd1a839a0907

See more details on using hashes here.

File details

Details for the file pyviewercloud-0.2.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyviewercloud-0.2.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 445721c61b1a10a388dc1d5505f540c7bccbb440f6f53e2dd97967d99da7d246
MD5 46a843c13807ed205467626b7183228f
BLAKE2b-256 b63d6ad1f7725824f1c9e91b35d0c6e52c41a9a009746fa79da0185d026bc7a0

See more details on using hashes here.

File details

Details for the file pyviewercloud-0.2.1-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pyviewercloud-0.2.1-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 430d30d7ba9c32c4b3df96a4f19d5670e6408b5d3ba791ae8ee931f7adcf48bb
MD5 ddfff2e45279428d832383107b56e655
BLAKE2b-256 99969e4a0e91b749503a1760dc666fc0457251a4ba40fd05d1ed4308c9ba6798

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page