Skip to main content

No project description provided

Project description

QFC - Quantized Fourier Compression of Timeseries Data with Application to Electrophysiology

Overview

With the increasing sizes of data for extracellular electrophysiology, it is crucial to develop efficient methods for compressing multi-channel time series data. While lossless methods are desirable for perfectly preserving the original signal, the compression ratios for these methods usually range only from 2-4x. What is needed are ratios on the order of 10-30x, leading us to consider lossy methods.

Here, we introduce a simple lossy compression method, inspired by the Discrete Cosine Transform (DCT) and the quantization steps of JPEG compression for images. The method comprises the following steps:

  • Compute the Discrete Fourier Transform (DFT) of the time series data in the time domain.
  • Quantize the Fourier coefficients to achieve a target entropy (the entropy determines the theoretically achievable compression ratio). This is done by multiplying by a normalization factor and then rounding to the nearest integer.
  • Compress the reduced-entropy quantized Fourier coefficients using GZIP (other methods could also be used).

To decompress:

  • Unzip the quantized Fourier coefficients.
  • Divide by the normalization factor.
  • Compute the Inverse Discrete Fourier Transform (IDFT) to obtain the reconstructed time series data.

This method is particularly well-suited for data that has been bandpass-filtered, as the suppressed Fourier coefficients yield an especially low entropy of the quantized signal.

For a comparison of various lossy and lossless compression schemes, see Compression strategies for large-scale electrophysiology data, Buccino et al..

To view this applied to some real data, see this notebook.

Installation

pip install qfc

Usage

# See the examples directory

from matplotlib import pyplot as plt
import numpy as np
from qfc import qfc_compress, qfc_decompress, qfc_estimate_normalization_factor


def main():
    sampling_frequency = 30000
    y = np.random.randn(5000, 10) * 50
    y = lowpass_filter(y, sampling_frequency, 6000)
    y = y.astype(np.int16)
    target_compression_ratio = 15

    ############################################################
    normalization_factor = qfc_estimate_normalization_factor(
        y,
        target_compression_ratio=target_compression_ratio
    )
    compressed_bytes = qfc_compress(
        y,
        normalization_factor=normalization_factor
    )
    y_decompressed = qfc_decompress(
        compressed_bytes,
        normalization_factor=normalization_factor,
        original_shape=y.shape
    )
    ############################################################

    y_resid = y - y_decompressed
    original_size = y.nbytes
    compressed_size = len(compressed_bytes)
    compression_ratio = original_size / compressed_size
    print(f"Original size: {original_size} bytes")
    print(f"Compressed size: {compressed_size} bytes")
    print(f'Target compression ratio: {target_compression_ratio}')
    print(f"Actual compression ratio: {compression_ratio}")
    print(f'Std. dev. of residual: {np.std(y_resid):.2f}')

    xgrid = np.arange(y.shape[0]) / sampling_frequency
    ch = 3  # select a channel to plot
    plt.figure()
    plt.plot(xgrid, y[:, ch], label="Original")
    plt.plot(xgrid, y_decompressed[:, ch], label="Decompressed")
    plt.plot(xgrid, y_resid[:, ch], label="Residual")
    plt.xlabel("Time")
    plt.title(f'QFC compression ratio: {compression_ratio:.2f}')
    plt.legend()
    plt.show()


def lowpass_filter(input_array, sampling_frequency, cutoff_frequency):
    F = np.fft.fft(input_array, axis=0)
    N = input_array.shape[0]
    freqs = np.fft.fftfreq(N, d=1/sampling_frequency)
    sigma = cutoff_frequency / 3
    window = np.exp(-np.square(freqs) / (2 * sigma**2))
    F_filtered = F * window[:, None]
    filtered_array = np.fft.ifft(F_filtered, axis=0)
    return np.real(filtered_array)


if __name__ == "__main__":
    main()

License

This code is provided under the Apache License, Version 2.0.

Author

Jeremy Magland, Center for Computational Mathematics, Flatiron Institute

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qfc-0.1.0.tar.gz (3.7 kB view details)

Uploaded Source

Built Distribution

qfc-0.1.0-py3-none-any.whl (4.2 kB view details)

Uploaded Python 3

File details

Details for the file qfc-0.1.0.tar.gz.

File metadata

  • Download URL: qfc-0.1.0.tar.gz
  • Upload date:
  • Size: 3.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.9.18 Linux/6.5.6-76060506-generic

File hashes

Hashes for qfc-0.1.0.tar.gz
Algorithm Hash digest
SHA256 205b3d9424265b07aaae19809ce385f2ea947560580754927a6226a60d82d068
MD5 d4cc16730159cdbb98047dec1fef3551
BLAKE2b-256 69c5573e8066396ab7c7641bdd34e99b034b18910899acc1a40f7ac8d6656ced

See more details on using hashes here.

File details

Details for the file qfc-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: qfc-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 4.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.9.18 Linux/6.5.6-76060506-generic

File hashes

Hashes for qfc-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c9b2590f5f8af54a725c392048321f9a5eb36fce905abf40fb91316046b21a84
MD5 854adbd6030ae37fe0d44feae2255f9f
BLAKE2b-256 6c92e3a2b62f02ba25e47770a37e9044831ba04a266456b602438252b12af5e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page