Skip to main content

No project description provided

Project description

QFC - Quantized Fourier Compression of Timeseries Data with Application to Electrophysiology

Overview

With the increasing sizes of data for extracellular electrophysiology, it is crucial to develop efficient methods for compressing multi-channel time series data. While lossless methods are desirable for perfectly preserving the original signal, the compression ratios for these methods usually range only from 2-4x. What is needed are ratios on the order of 10-30x, leading us to consider lossy methods.

Here, we implement a simple lossy compression method, inspired by the Discrete Cosine Transform (DCT) and the quantization steps of JPEG compression for images. The method comprises the following steps:

  • Compute the Discrete Fourier Transform (DFT) of the time series data in the time domain.
  • Quantize the Fourier coefficients to achieve a target entropy (the entropy determines the theoretically achievable compression ratio). This is done by multiplying by a normalization factor and then rounding to the nearest integer.
  • Compress the reduced-entropy quantized Fourier coefficients using zlib or zstd (other methods could be used instead).

To decompress:

  • Decompress the quantized Fourier coefficients.
  • Divide by the normalization factor.
  • Compute the Inverse Discrete Fourier Transform (IDFT) to obtain the reconstructed time series data.

This method is particularly well-suited for data that has been bandpass-filtered, as the suppressed Fourier coefficients yield an especially low entropy of the quantized signal.

For a comparison of various lossy and lossless compression schemes, see Compression strategies for large-scale electrophysiology data, Buccino et al..

Installation

pip install qfc

Usage

# See examples/example1.py

from matplotlib import pyplot as plt
import numpy as np
from qfc import qfc_estimate_quant_scale_factor
from qfc.codecs import QFCCodec


def main():
    sampling_frequency = 30000
    duration = 2
    num_channels = 10
    num_samples = int(sampling_frequency * duration)
    y = np.random.randn(num_samples, num_channels) * 50
    y = lowpass_filter(y, sampling_frequency, 6000)
    y = np.ascontiguousarray(y)  # compressor requires C-order arrays
    y = y.astype(np.int16)
    target_residual_stdev = 5

    ############################################################
    quant_scale_factor = qfc_estimate_quant_scale_factor(
        y,
        target_residual_stdev=target_residual_stdev
    )
    codec = QFCCodec(
        quant_scale_factor=quant_scale_factor,
        dtype="int16",
        segment_length=0,
        compression_method="zlib",
        zlib_level=3
    )
    compressed_bytes = codec.encode(y)
    y_reconstructed = codec.decode(compressed_bytes)
    ############################################################

    y_resid = y - y_reconstructed
    original_size = y.nbytes
    compressed_size = len(compressed_bytes)
    compression_ratio = original_size / compressed_size
    print(f"Original size: {original_size} bytes")
    print(f"Compressed size: {compressed_size} bytes")
    print(f"Actual compression ratio: {compression_ratio}")
    print(f'Target residual std. dev.: {target_residual_stdev:.2f}')
    print(f'Actual Std. dev. of residual: {np.std(y_resid):.2f}')

    xgrid = np.arange(y.shape[0]) / sampling_frequency
    ch = 3  # select a channel to plot
    n = 1000  # number of samples to plot
    plt.figure()
    plt.plot(xgrid[:n], y[:n, ch], label="Original")
    plt.plot(xgrid[:n], y_reconstructed[:n, ch], label="Decompressed")
    plt.plot(xgrid[:n], y_resid[:n, ch], label="Residual")
    plt.xlabel("Time")
    plt.title(f'QFC compression ratio: {compression_ratio:.2f}')
    plt.legend()
    plt.show()


def lowpass_filter(input_array, sampling_frequency, cutoff_frequency):
    F = np.fft.fft(input_array, axis=0)
    N = input_array.shape[0]
    freqs = np.fft.fftfreq(N, d=1 / sampling_frequency)
    sigma = cutoff_frequency / 3
    window = np.exp(-np.square(freqs) / (2 * sigma**2))
    F_filtered = F * window[:, None]
    filtered_array = np.fft.ifft(F_filtered, axis=0)
    return np.real(filtered_array)


if __name__ == "__main__":
    main()

License

This code is provided under the Apache License, Version 2.0.

Author

Jeremy Magland, Center for Computational Mathematics, Flatiron Institute

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qfc-0.3.0.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

qfc-0.3.0-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file qfc-0.3.0.tar.gz.

File metadata

  • Download URL: qfc-0.3.0.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.9.18 Linux/6.5.6-76060506-generic

File hashes

Hashes for qfc-0.3.0.tar.gz
Algorithm Hash digest
SHA256 a8e58699fb1faef11ca5346ebe6be84bb8e6e2c75a0578b55f10d819b20a553c
MD5 5a948fcd13e7e325b553c11dd742bffc
BLAKE2b-256 983ce6288286ef181d81fbf3068a0ba9a2cd9395b0019dde8bd13f02a273a4aa

See more details on using hashes here.

File details

Details for the file qfc-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: qfc-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 9.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.9.18 Linux/6.5.6-76060506-generic

File hashes

Hashes for qfc-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4abf5ba25172eeffbbb9b870bffb7fb1e62cf080c3cde29d632a3153638135e3
MD5 84c2ea2180f46c26bb125a9443564be1
BLAKE2b-256 2fcb9ef1d061a1324c9c06fb297d0cc46d088d69bf839a6b950eebe7cde3b7d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page