Skip to main content

No project description provided

Project description

QFC - Quantized Fourier Compression of Timeseries Data with Application to Electrophysiology

Overview

With the increasing sizes of data for extracellular electrophysiology, it is crucial to develop efficient methods for compressing multi-channel time series data. While lossless methods are desirable for perfectly preserving the original signal, the compression ratios for these methods usually range only from 2-4x. What is needed are ratios on the order of 10-30x, leading us to consider lossy methods.

Here, we implement a simple lossy compression method, inspired by the Discrete Cosine Transform (DCT) and the quantization steps of JPEG compression for images. The method comprises the following steps:

  • Compute the Discrete Fourier Transform (DFT) of the time series data in the time domain.
  • Quantize the Fourier coefficients to achieve a target entropy (the entropy determines the theoretically achievable compression ratio). This is done by multiplying by a normalization factor and then rounding to the nearest integer.
  • Compress the reduced-entropy quantized Fourier coefficients using zlib or zstd (other methods could be used instead).

To decompress:

  • Decompress the quantized Fourier coefficients.
  • Divide by the normalization factor.
  • Compute the Inverse Discrete Fourier Transform (IDFT) to obtain the reconstructed time series data.

This method is particularly well-suited for data that has been bandpass-filtered, as the suppressed Fourier coefficients yield an especially low entropy of the quantized signal.

For a comparison of various lossy and lossless compression schemes, see Compression strategies for large-scale electrophysiology data, Buccino et al..

Installation

pip install qfc

Example usage

# See examples/example1.py

from matplotlib import pyplot as plt
import numpy as np
from qfc import qfc_estimate_quant_scale_factor
from qfc.codecs import QFCCodec


def main():
    sampling_frequency = 30000
    duration = 2
    num_channels = 10
    num_samples = int(sampling_frequency * duration)
    y = np.random.randn(num_samples, num_channels) * 50
    y = lowpass_filter(y, sampling_frequency, 6000)
    y = np.ascontiguousarray(y)  # compressor requires C-order arrays
    y = y.astype(np.int16)
    target_residual_stdev = 5

    ############################################################
    quant_scale_factor = qfc_estimate_quant_scale_factor(
        y,
        target_residual_stdev=target_residual_stdev
    )
    codec = QFCCodec(
        quant_scale_factor=quant_scale_factor,
        dtype="int16",
        segment_length=0,
        compression_method="zlib",
        zlib_level=3
    )
    compressed_bytes = codec.encode(y)
    y_reconstructed = codec.decode(compressed_bytes)
    ############################################################

    y_resid = y - y_reconstructed
    original_size = y.nbytes
    compressed_size = len(compressed_bytes)
    compression_ratio = original_size / compressed_size
    print(f"Original size: {original_size} bytes")
    print(f"Compressed size: {compressed_size} bytes")
    print(f"Actual compression ratio: {compression_ratio}")
    print(f'Target residual std. dev.: {target_residual_stdev:.2f}')
    print(f'Actual Std. dev. of residual: {np.std(y_resid):.2f}')

    xgrid = np.arange(y.shape[0]) / sampling_frequency
    ch = 3  # select a channel to plot
    n = 1000  # number of samples to plot
    plt.figure()
    plt.plot(xgrid[:n], y[:n, ch], label="Original")
    plt.plot(xgrid[:n], y_reconstructed[:n, ch], label="Decompressed")
    plt.plot(xgrid[:n], y_resid[:n, ch], label="Residual")
    plt.xlabel("Time")
    plt.title(f'QFC compression ratio: {compression_ratio:.2f}')
    plt.legend()
    plt.show()


def lowpass_filter(input_array, sampling_frequency, cutoff_frequency):
    F = np.fft.fft(input_array, axis=0)
    N = input_array.shape[0]
    freqs = np.fft.fftfreq(N, d=1 / sampling_frequency)
    sigma = cutoff_frequency / 3
    window = np.exp(-np.square(freqs) / (2 * sigma**2))
    F_filtered = F * window[:, None]
    filtered_array = np.fft.ifft(F_filtered, axis=0)
    return np.real(filtered_array)


if __name__ == "__main__":
    main()

Zarr example

See examples/zarr_example.py

License

This code is provided under the Apache License, Version 2.0.

Author

Jeremy Magland, Center for Computational Mathematics, Flatiron Institute

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qfc-0.3.1.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

qfc-0.3.1-py3-none-any.whl (12.6 kB view details)

Uploaded Python 3

File details

Details for the file qfc-0.3.1.tar.gz.

File metadata

  • Download URL: qfc-0.3.1.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.9.18 Linux/6.5.6-76060506-generic

File hashes

Hashes for qfc-0.3.1.tar.gz
Algorithm Hash digest
SHA256 bbb3491d46df28046b82d01603fce06b4ea478e206ba2f3b30db32c02fa3bd0d
MD5 77f9fc61f7e8744c0a2860eeae93a205
BLAKE2b-256 2a86d7273a2a3387446c521befb06efd44f0ab62bd6efd751cfaaeb7208cf47c

See more details on using hashes here.

File details

Details for the file qfc-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: qfc-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.9.18 Linux/6.5.6-76060506-generic

File hashes

Hashes for qfc-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f7c11cc2eeaeba2859bf4baa7a704e96efecb1ff8d9ab57363d24f6d229fdc3c
MD5 1990101532caf100790f3186f3419e17
BLAKE2b-256 ad4739a25bc0f1dc98f110520b507733be78a72099ac912374a770563cc0e48c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page