Skip to main content

JIT compiles and executes programs written in QIR (Quantum Intermediate Representation).

Reason this release was yanked:

Failed to release all platforms

Project description

QIR Runner

This project implements a basic QIR runtime and execution tool. Once installed, qir-runner will be available via the command line in your python environment as well as the qirrunner module which can be imported into a Python program.

Usage

Command line

Usage: qir-runner [OPTIONS] --file <PATH>

Options:
  -f, --file <PATH>        (Required) Path to the QIR file to run
  -e, --entrypoint <NAME>  Name of the entry point function to execute
  -s, --shots <NUM>        The number of times to repeat the execution of the chosen entry point in the program [default: 1]
  -r, --rngseed <NUM>      The value to use when seeding the random number generator used for quantum simulation
  -h, --help               Print help
  -V, --version            Print version

Python module

From a Python program, qirrunner provides a run function and two output helpers Output and OutputHandler. If the output_fn parameter of run is not specified, output will be written to stdout. Supplying the parameter allows the output of the execution to be captured.

from qirrunner import run, OutputHandler

path = "./runner/tests/resources/bv.bc"

handler = OutputHandler()
run(path, shots=2, output_fn=handler.handle)

print(handler.get_output())

Installation

pip install qirrunner

Installing from sdist

Platforms for which qirrunner doesn't have pre-built wheels (such as aarch64 macos), installation is available via sdist. Before installing qirrunner via pip:

  • Install a usable LLVM distribution which has llvm-config available.
  • Set the LLVM_SYS_140_PREFIX environment variable to the LLVM installation directory
    • example: export LLVM_SYS_140_PREFIX=/Users/sample/llvm
  • Install: python -m pip install qirrunner
    • This will build qirrunner from source. You will need a working Rust installation in order for this to compile.

Implemented APIs

double @__quantum__qis__arccos__body(double)
double @__quantum__qis__arcsin__body(double)
double @__quantum__qis__arctan__body(double)
double @__quantum__qis__arctan2__body(double)
void @__quantum__qis__assertmeasurementprobability__body(%Array*, %Array*, %Result*, double, %String*, double)
void @__quantum__qis__assertmeasurementprobability__ctl(%Array*, %Tuple*)
void @__quantum__qis__ccx__body(%Qubit*, %Qubit*)
void @__quantum__qis__cnot__body(%Qubit*, %Qubit*)
double @__quantum__qis__cos__body(double)
double @__quantum__qis__cosh__body(double)
void @__quantum__qis__cx__body(%Qubit*, %Qubit*)
void @__quantum__qis__cy__body(%Qubit*, %Qubit*)
void @__quantum__qis__cz__body(%Qubit*, %Qubit*)
double @__quantum__qis__drawrandomdouble__body()
i64 @__quantum__qis__drawrandomint__body()
void @__quantum__qis__dumpmachine__body()
void @__quantum__qis__exp__adj(%Array*, double, %Array*)
void @__quantum__qis__exp__body(%Array*, double, %Array*)
void @__quantum__qis__exp__ctl(%Array*, %Tuple*)
void @__quantum__qis__exp__ctladj(%Array*, %Tuple*)
void @__quantum__qis__exp__ctl(%Array*, %Tuple*)
void @__quantum__qis__h__body(%Qubit*)
void @__quantum__qis__h__ctl(%Array*, %Qubit*)
double @__quantum__qis__ieeeremainder__body(double, double)
double @__quantum__qis__infinity__body()
i1 @__quantum__qis__isinf__body()
i1 @__quantum__qis__isnan__body()
i1 @__quantum__qis__isnegativeinfinity__body()
double @__quantum__qis__log__body(double)
%Result* @__quantum__qis__m__body(%Qubit*)
%Result* @__quantum__qis__measure__body(%Array*, %Array*)
%Result* @__quantum__qis__mresetz__body(%Qubit*)
void @__quantum__qis__mz__body(%Qubit*, %Result*)
double @__quantum__qis__nan__body()
void @__quantum__qis__r__adj(i2, double, %Qubit*)
void @__quantum__qis__r__body(i2, double, %Qubit*)
void @__quantum__qis__r__ctl(%Array*, %Tuple*)
void @__quantum__qis__r__ctladj(%Array*, %Tuple*)
bool @__quantum__qis__read_result__body(%Result*)
void @__quantum__qis__reset__body(%Qubit*)
void @__quantum__qis__rx__body(double, %Qubit*)
void @__quantum__qis__rx__ctl(%Array*, %Tuple*)
void @__quantum__qis__rxx__body(double, %Qubit*, %Qubit*)
void @__quantum__qis__ry__body(double, %Qubit*)
void @__quantum__qis__ry__ctl(%Array*, %Tuple*)
void @__quantum__qis__ryy__body(double, %Qubit*, %Qubit*)
void @__quantum__qis__rz__body(double, %Qubit*)
void @__quantum__qis__rz__ctl(%Array*, %Tuple*)
void @__quantum__qis__rzz__body(double, %Qubit*, %Qubit*)
void @__quantum__qis__s__adj(%Qubit*)
void @__quantum__qis__s__body(%Qubit*)
void @__quantum__qis__s__ctl(%Array*, %Qubit*)
void @__quantum__qis__s__ctladj(%Array*, %Qubit*)
double @__quantum__qis__sin__body(double)
double @__quantum__qis__sinh__body(double)
double @__quantum__qis__sqrt__body(double)
void @__quantum__qis__swap__body(%Qubit*, %Qubit*)
void @__quantum__qis__t__adj(%Qubit*)
void @__quantum__qis__t__body(%Qubit*)
void @__quantum__qis__t__ctl(%Array*, %Qubit*)
void @__quantum__qis__t__ctladj(%Array*, %Qubit*)
double @__quantum__qis__tan__body(double)
double @__quantum__qis__tanh__body(double)
void @__quantum__qis__x__body(%Qubit*)
void @__quantum__qis__x__ctl(%Array*, %Qubit*)
void @__quantum__qis__y__body(%Qubit*)
void @__quantum__qis__y__ctl(%Array*, %Qubit*)
void @__quantum__qis__z__body(%Qubit*)
void @__quantum__qis__z__ctl(%Array*, %Qubit*)
%Array* @__quantum__rt__array_concatenate(%Array*, %Array*)
%Array* @__quantum__rt__array_copy(%Array*, bool)
%Array* @__quantum__rt__array_create_1d(i32, i64)
i8* @__quantum__rt__array_get_element_ptr_1d(%Array*, i64)
i64 @__quantum__rt__array_get_size_1d(%Array*)
void @__quantum__rt__array_record_output(i64, i8*)
void @__quantum__rt__array_update_alias_count(%Array*, i32)
void @__quantum__rt__array_update_reference_count(%Array*, i32)
%BigInt* @__quantum__rt__bigint_add(%BigInt*, %BigInt*)
%BigInt* @__quantum__rt__bigint_bitand(%BigInt*, %BigInt*)
%BigInt* @__quantum__rt__bigint_bitnot(%BigInt*)
%BigInt* @__quantum__rt__bigint_bitor(%BigInt*, %BigInt*)
%BigInt* @__quantum__rt__bigint_bitxor(%BigInt*, %BigInt*)
%BigInt* @__quantum__rt__bigint_create_array(i32, i8*)
%BigInt* @__quantum__rt__bigint_create_i64(i64)
%BigInt* @__quantum__rt__bigint_divide(%BigInt*, %BigInt*)
bool @__quantum__rt__bigint_equal(%BigInt*, %BigInt*)
i8* @__quantum__rt__bigint_get_data(%BigInt*)
i32 @__quantum__rt__bigint_get_length(%BigInt*)
bool @__quantum__rt__bigint_greater(%BigInt*, %BigInt*)
bool @__quantum__rt__bigint_greater_eq(%BigInt*, %BigInt*)
%BigInt* @__quantum__rt__bigint_modulus(%BigInt*, %BigInt*)
%BigInt* @__quantum__rt__bigint_multiply(%BigInt*, %BigInt*)
%BigInt* @__quantum__rt__bigint_negate(%BigInt*)
%BigInt* @__quantum__rt__bigint_power(%BigInt*, i32)
%BigInt* @__quantum__rt__bigint_shiftleft(%BigInt*, i64)
%BigInt*@__quantum__rt__bigint_shiftright(%BigInt*, i64)
void @__quantum__rt__bigint_subtract(%BigInt*, %BigInt*)
%String* @__quantum__rt__bigint_to_string(%BigInt*)
void @__quantum__rt__bigint_update_reference_count(%BigInt*, i32)
void @__quantum__rt__bool_record_output(i1, i8*)
%String* @__quantum__rt__bool_to_string(i1)
%Callable* @__quantum__rt__callable_copy(%Callable*, bool)
%Callable* @__quantum__rt__callable_create([4 x void(%Tuple*, %Tuple*, %Tuple*)*]*, [2 x void (%Tuple*, i32)]*, %Tuple*)
void @__quantum__rt__callable_invoke(%Callable*, %Tuple*, %Tuple*)
void @__quantum__rt__callable_make_adjoint(%Callable*)
void @__quantum__rt__callable_make_controlled(%Callable*)
void @__quantum__rt__callable_update_alias_count(%Callable*, i32)
void @__quantum__rt__callable_update_reference_count(%Callable*, i32)
void @__quantum__rt__capture_update_alias_count(%Callable*, i32)
void @__quantum__rt__capture_update_reference_count(%Callable*, i32)
void @__quantum__rt__double_record_output(double, i8*)
%String* @__quantum__rt__double_to_string(double)
void @__quantum__rt__fail(%String*)
void @__quantum__rt__int_record_output(i64, i8*)
%String* @__quantum__rt__int_to_string(i64)
i8* @__quantum__rt__memory_allocate(i64)
void @__quantum__rt__message(%String*)
void @__quantum__rt__message_record_output(%String*)
%String* @__quantum__rt__pauli_to_string(i2)
%Qubit* @__quantum__rt__qubit_allocate()
%Array* @__quantum__rt__qubit_allocate_array(i64)
void @__quantum__rt__qubit_release(%Qubit*)
void @__quantum__rt__qubit_release_array(%Array*)
%String* @__quantum__rt__qubit_to_string(%Qubit*)
bool @__quantum__rt__result_equal(%Result*, %Result*)
%Result* @__quantum__rt__result_get_one()
%Result* @__quantum__rt__result_get_zero()
void @__quantum__rt__result_record_output(%Result*, i8*)
%String* @__quantum__rt__result_to_string(%Result*)
void @__quantum__rt__result_update_reference_count(%Result*, i32)
%String* @__quantum__rt__string_concatenate(%String*, %String*)
%String* @__quantum__rt__string_create(i8*)
bool @__quantum__rt__string_equal(%String*, %String*)
i8* @__quantum__rt__string_get_data(%String*)
i32 @__quantum__rt__string_get_length(%String*)
void @__quantum__rt__string_update_reference_count(%String*, i32)
%Tuple* @__quantum__rt__tuple_copy(%Tuple*, i1)
%Tuple* @__quantum__rt__tuple_create(i64)
void @__quantum__rt__tuple_record_output(i64, i8*)
void @__quantum__rt__tuple_update_alias_count(%Tuple*, i32)
void @__quantum__rt__tuple_update_reference_count(%Tuple*, i32)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qirrunner-0.7.2.tar.gz (256.6 kB view details)

Uploaded Source

Built Distributions

qirrunner-0.7.2-cp38-abi3-win_amd64.whl (13.9 MB view details)

Uploaded CPython 3.8+ Windows x86-64

qirrunner-0.7.2-cp38-abi3-manylinux_2_31_x86_64.whl (24.3 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.31+ x86-64

qirrunner-0.7.2-cp38-abi3-macosx_10_12_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file qirrunner-0.7.2.tar.gz.

File metadata

  • Download URL: qirrunner-0.7.2.tar.gz
  • Upload date:
  • Size: 256.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: RestSharp/106.13.0.0

File hashes

Hashes for qirrunner-0.7.2.tar.gz
Algorithm Hash digest
SHA256 70d4af32928f56dfb8e64f08e9f1003841ef82b8a8cfb40512e69bcbc15d11fd
MD5 5762cef64469b1bf0ff90e0602f806a2
BLAKE2b-256 56a221df989a94b9948b905bb42ca7b9fc9001888996026321be46eb82ad9692

See more details on using hashes here.

File details

Details for the file qirrunner-0.7.2-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for qirrunner-0.7.2-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 8dafda4e242fa5d80e3a982032fa751483473872dc9239c358cf91c5e403a87c
MD5 c353bd4c3143f6ab56bd540fc050026c
BLAKE2b-256 16d52bba2faf6d47ece9157742bf6e979fa0001f261d5106292d82917cb550c2

See more details on using hashes here.

File details

Details for the file qirrunner-0.7.2-cp38-abi3-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for qirrunner-0.7.2-cp38-abi3-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 e0114ad9b074ff5e75829390bb9bb6a8f5cb455ac090d67089e5d3b147122b2d
MD5 31c2ddaa3c4b5ef2d05e0068540b080d
BLAKE2b-256 ad10b5ab41dcadc51e5cbaca6ead7718d1639541c2194e14617596cc1f5bb377

See more details on using hashes here.

File details

Details for the file qirrunner-0.7.2-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for qirrunner-0.7.2-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 65c4e85d06ead686e3e99751c888172f9e95bd72a59913a480be3f8de0c9a228
MD5 b041ec67d896f74ee5d478db07940cc4
BLAKE2b-256 64dcd17e343af89477278d721178263f9289ed941564e9897d6adcd8c0d6d65a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page