Skip to main content

Calculate quasinormal modes of Kerr black holes.

Project description

github PyPI version license Documentation Status

Welcome to qnm

Python implementation of Cook-Zalutskiy spectral approach to computing Kerr quasinormal frequencies (QNMs).

With this python package, you can compute the QNMs labeled by different (s,l,m,n), at a desired dimensionless spin parameter 0≤a<1. The angular sector is treated as a spectral decomposition of spin-weighted spheroidal harmonics into spin-weighted spherical harmonics. Therefore the spherical-spheroidal decomposition coefficients come for free when solving for ω and A.

We have precomputed a large number of low-lying modes (s=-2 and s=-1, all l<8, all n<7). These can be automatically installed with a single function call, and interpolated for good initial guesses for root-finding at some value of a.

Installation

PyPI

qnm is available through PyPI:

pip install qnm

From source

git clone https://github.com/duetosymmetry/qnm.git
cd qnm
python setup.py install

If you do not have root permissions, replace the last step with python setup.py install --user

Dependencies

All of these can be installed through pip or conda.

Documentation

Automatically-generated API documentation is available on Read the Docs: qnm.

Usage

The highest-level interface is via qnm.cached.KerrSeqCache, which loads cached spin sequences from disk. A spin sequence is just a mode labeled by (s,l,m,n), with the spin a ranging from a=0 to some maximum, e.g. 0.9995. A large number of low-lying spin sequences have been precomputed and are available online. The first time you use the package, download the precomputed sequences:

import qnm

qnm.download_data() # Only need to do this once
# Trying to fetch https://duetosymmetry.com/files/qnm/data.tar.bz2
# Trying to decompress file /<something>/qnm/data.tar.bz2
# Data directory /<something>/qnm/data contains 860 pickle files

Then, use qnm.cached.KerrSeqCache to load a qnm.spinsequence.KerrSpinSeq of interest. If the mode is not available, it will try to compute it (see detailed documentation for how to control that calculation).

ksc = qnm.cached.KerrSeqCache(init_schw=True) # Only need init_schw once
mode_seq = ksc(s=-2,l=2,m=2,n=0)
omega, A, C = mode_seq(a=0.68)
print(omega)
# (0.5239751042900845-0.08151262363119974j)

Calling a spin sequence with mode_seq(a) will return the complex quasinormal mode frequency omega, the complex angular separation constant A, and a vector C of coefficients for decomposing the associated spin-weighted spheroidal harmonics as a sum of spin-weighted spherical harmonics.

Visual inspections of modes are very useful to check if the solver is behaving well. This is easily accomplished with matplotlib. Here are some simple examples:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('text', usetex = True)

s, l, m = (-2, 2, 2)
mode_list = [(s, l, m, n) for n in np.arange(0,7)]
modes = {}
for ind in mode_list:
    modes[ind] = ksc(*ind)

plt.figure(figsize=(16,8))

plt.subplot(1, 2, 1)
for mode, seq in modes.iteritems():
    plt.plot(np.real(seq.omega),np.imag(seq.omega))


modestr = "{},{},{},n".format(s,l,m)
plt.xlabel(r'$\textrm{Re}[\omega_{' + modestr + r'}]$', fontsize=16)
plt.ylabel(r'$\textrm{Im}[\omega_{' + modestr + r'}]$', fontsize=16)
plt.gca().tick_params(labelsize=16)
plt.gca().invert_yaxis()

plt.subplot(1, 2, 2)
for mode, seq in modes.iteritems():
    plt.plot(np.real(seq.A),np.imag(seq.A))

plt.xlabel(r'$\textrm{Re}[A_{' + modestr + r'}]$', fontsize=16)
plt.ylabel(r'$\textrm{Im}[A_{' + modestr + r'}]$', fontsize=16)
plt.gca().tick_params(labelsize=16)

plt.show()

Which results in the following figure:

example_22n plot

s, l, n = (-2, 2, 0)
mode_list = [(s, l, m, n) for m in np.arange(-l,l+1)]
for ind in mode_list:
    modes[ind] = ksc(*ind)

plt.figure(figsize=(16,8))

plt.subplot(1, 2, 1)
for mode, seq in modes.iteritems():
    plt.plot(np.real(seq.omega),np.imag(seq.omega))


modestr = "{},{},m,0".format(s,l)
plt.xlabel(r'$\textrm{Re}[\omega_{' + modestr + r'}]$', fontsize=16)
plt.ylabel(r'$\textrm{Im}[\omega_{' + modestr + r'}]$', fontsize=16)
plt.gca().tick_params(labelsize=16)
plt.gca().invert_yaxis()

plt.subplot(1, 2, 2)
for mode, seq in modes.iteritems():
    plt.plot(np.real(seq.A),np.imag(seq.A))

plt.xlabel(r'$\textrm{Re}[A_{' + modestr + r'}]$', fontsize=16)
plt.ylabel(r'$\textrm{Im}[A_{' + modestr + r'}]$', fontsize=16)
plt.gca().tick_params(labelsize=16)

plt.show()

Which results in the following figure:

example_2m0 plot

Credits

The code is developed and maintained by Leo C. Stein.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qnm-0.2.1.tar.gz (24.7 kB view details)

Uploaded Source

Built Distribution

qnm-0.2.1-py2-none-any.whl (86.0 kB view details)

Uploaded Python 2

File details

Details for the file qnm-0.2.1.tar.gz.

File metadata

  • Download URL: qnm-0.2.1.tar.gz
  • Upload date:
  • Size: 24.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for qnm-0.2.1.tar.gz
Algorithm Hash digest
SHA256 682ee14e6c99218596955a4781b49657651d3ce8a7b2ff9a164c6c043b74bdeb
MD5 c8f869c63e91ab9be8068677c6d761bd
BLAKE2b-256 71e74239a53dac2abf4c4ae355f8379b23604e877852a5c409238cc976a19f8f

See more details on using hashes here.

File details

Details for the file qnm-0.2.1-py2-none-any.whl.

File metadata

  • Download URL: qnm-0.2.1-py2-none-any.whl
  • Upload date:
  • Size: 86.0 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for qnm-0.2.1-py2-none-any.whl
Algorithm Hash digest
SHA256 fc24ecc47a298af53e5a5c90d6c6fb45a9e65754fbfa70c3b978ff5f181c9202
MD5 c7036989eccb52335d28a07a25670ac9
BLAKE2b-256 c46e7db043bbb6a7684413d152f6bfd1b3245f8ae2e495ff3c8f4f1ca125a768

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page