Skip to main content

Calculate quasinormal modes of Kerr black holes.

Project description

github PyPI version license Documentation Status

Welcome to qnm

Python implementation of Cook-Zalutskiy spectral approach to computing Kerr quasinormal frequencies (QNMs).

With this python package, you can compute the QNMs labeled by different (s,l,m,n), at a desired dimensionless spin parameter 0≤a<1. The angular sector is treated as a spectral decomposition of spin-weighted spheroidal harmonics into spin-weighted spherical harmonics. Therefore the spherical-spheroidal decomposition coefficients come for free when solving for ω and A.

We have precomputed a large number of low-lying modes (s=-2 and s=-1, all l<8, all n<7). These can be automatically installed with a single function call, and interpolated for good initial guesses for root-finding at some value of a.

Installation

PyPI

qnm is available through PyPI:

pip install qnm

From source

git clone https://github.com/duetosymmetry/qnm.git
cd qnm
python setup.py install

If you do not have root permissions, replace the last step with python setup.py install --user

Dependencies

All of these can be installed through pip or conda.

Documentation

Automatically-generated API documentation is available on Read the Docs: qnm.

Usage

The highest-level interface is via qnm.cached.KerrSeqCache, which loads cached spin sequences from disk. A spin sequence is just a mode labeled by (s,l,m,n), with the spin a ranging from a=0 to some maximum, e.g. 0.9995. A large number of low-lying spin sequences have been precomputed and are available online. The first time you use the package, download the precomputed sequences:

import qnm

qnm.download_data() # Only need to do this once
# Trying to fetch https://duetosymmetry.com/files/qnm/data.tar.bz2
# Trying to decompress file /<something>/qnm/data.tar.bz2
# Data directory /<something>/qnm/data contains 860 pickle files

Then, use qnm.cached.KerrSeqCache to load a qnm.spinsequence.KerrSpinSeq of interest. If the mode is not available, it will try to compute it (see detailed documentation for how to control that calculation).

ksc = qnm.cached.KerrSeqCache(init_schw=True) # Only need init_schw once
mode_seq = ksc(s=-2,l=2,m=2,n=0)
omega, A, C = mode_seq(a=0.68)
print(omega)
# (0.5239751042900845-0.08151262363119974j)

Calling a spin sequence with mode_seq(a) will return the complex quasinormal mode frequency omega, the complex angular separation constant A, and a vector C of coefficients for decomposing the associated spin-weighted spheroidal harmonics as a sum of spin-weighted spherical harmonics.

Visual inspections of modes are very useful to check if the solver is behaving well. This is easily accomplished with matplotlib. Here are some simple examples:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('text', usetex = True)

s, l, m = (-2, 2, 2)
mode_list = [(s, l, m, n) for n in np.arange(0,7)]
modes = {}
for ind in mode_list:
    modes[ind] = ksc(*ind)

plt.figure(figsize=(16,8))

plt.subplot(1, 2, 1)
for mode, seq in modes.items():
    plt.plot(np.real(seq.omega),np.imag(seq.omega))


modestr = "{},{},{},n".format(s,l,m)
plt.xlabel(r'$\textrm{Re}[\omega_{' + modestr + r'}]$', fontsize=16)
plt.ylabel(r'$\textrm{Im}[\omega_{' + modestr + r'}]$', fontsize=16)
plt.gca().tick_params(labelsize=16)
plt.gca().invert_yaxis()

plt.subplot(1, 2, 2)
for mode, seq in modes.items():
    plt.plot(np.real(seq.A),np.imag(seq.A))

plt.xlabel(r'$\textrm{Re}[A_{' + modestr + r'}]$', fontsize=16)
plt.ylabel(r'$\textrm{Im}[A_{' + modestr + r'}]$', fontsize=16)
plt.gca().tick_params(labelsize=16)

plt.show()

Which results in the following figure:

example_22n plot

s, l, n = (-2, 2, 0)
mode_list = [(s, l, m, n) for m in np.arange(-l,l+1)]
for ind in mode_list:
    modes[ind] = ksc(*ind)

plt.figure(figsize=(16,8))

plt.subplot(1, 2, 1)
for mode, seq in modes.items():
    plt.plot(np.real(seq.omega),np.imag(seq.omega))


modestr = "{},{},m,0".format(s,l)
plt.xlabel(r'$\textrm{Re}[\omega_{' + modestr + r'}]$', fontsize=16)
plt.ylabel(r'$\textrm{Im}[\omega_{' + modestr + r'}]$', fontsize=16)
plt.gca().tick_params(labelsize=16)
plt.gca().invert_yaxis()

plt.subplot(1, 2, 2)
for mode, seq in modes.items():
    plt.plot(np.real(seq.A),np.imag(seq.A))

plt.xlabel(r'$\textrm{Re}[A_{' + modestr + r'}]$', fontsize=16)
plt.ylabel(r'$\textrm{Im}[A_{' + modestr + r'}]$', fontsize=16)
plt.gca().tick_params(labelsize=16)

plt.show()

Which results in the following figure:

example_2m0 plot

Credits

The code is developed and maintained by Leo C. Stein.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qnm-0.2.3.tar.gz (25.0 kB view details)

Uploaded Source

Built Distribution

qnm-0.2.3-py2-none-any.whl (86.3 kB view details)

Uploaded Python 2

File details

Details for the file qnm-0.2.3.tar.gz.

File metadata

  • Download URL: qnm-0.2.3.tar.gz
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for qnm-0.2.3.tar.gz
Algorithm Hash digest
SHA256 d5c00b90380a7286101ecf2f8767985927a985592406a358ce8efea7f0508cfe
MD5 d82d6f4b2541769e45af7ae2f92d9b65
BLAKE2b-256 e357e651cc1aa269a4e45333e8fd7cafdd15cd7d37ceee9f5c2fef43ee92a1ee

See more details on using hashes here.

File details

Details for the file qnm-0.2.3-py2-none-any.whl.

File metadata

  • Download URL: qnm-0.2.3-py2-none-any.whl
  • Upload date:
  • Size: 86.3 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for qnm-0.2.3-py2-none-any.whl
Algorithm Hash digest
SHA256 fb1a4d3f754a958fd777fd06628803dc44da8f570028ca79d048a75186a5bc42
MD5 0c763bd8a27abf8a6e7520af4050a9ab
BLAKE2b-256 960573409de334d2585bae3f4d545e6342421f45312a56d50b0e20083c98cda1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page