Skip to main content

No project description provided

Project description

Stability Client verify process License Code style: Black Python Qiskit

Quantum Serverless client

diagram

Installation

pip install quantum_serverless

Documentation

Full docs can be found at https://qiskit-extensions.github.io/quantum-serverless/

Usage

Step 1: write program

  from quantum_serverless import distribute_task, get, get_arguments, save_result

   from qiskit import QuantumCircuit
   from qiskit.circuit.random import random_circuit
   from qiskit.primitives import Sampler
   from qiskit.quantum_info import SparsePauliOp

   # 1. let's annotate out function to convert it
   # to distributed async function
   # using `distribute_task` decorator
   @distribute_task()
   def distributed_sample(circuit: QuantumCircuit):
       """Calculates quasi dists as a distributed function."""
       return Sampler().run(circuit).result().quasi_dists[0]


   # 2. our program will have one arguments
   # `circuits` which will store list of circuits
   # we want to sample in parallel.
   # Let's use `get_arguments` funciton
   # to access all program arguments
   arguments = get_arguments()
   circuits = arguments.get("circuits", [])

   # 3. run our functions in a loop
   # and get execution references back
   function_references = [
       distributed_sample(circuit)
       for circuit in circuits
   ]

   # 4. `get` function will collect all
   # results from distributed functions
   collected_results = get(function_references)

   # 5. `save_result` will save results of program execution
   # so we can access it later
   save_result({
       "quasi_dists": collected_results
   })

Step 2: run program

   from quantum_serverless import QuantumServerless, GatewayProvider
   from qiskit.circuit.random import random_circuit

   serverless = QuantumServerless(GatewayProvider(
       username="<USERNAME>", 
       password="<PASSWORD>",
       host="<GATEWAY_ADDRESS>",
   ))

   # create program
   program = Program(
       title="Quickstart",
       entrypoint="program.py",
       working_dir="./src"
   )

   # create inputs to our program
   circuits = []
   for _ in range(3):
       circuit = random_circuit(3, 2)
       circuit.measure_all()
       circuits.append(circuit)

   # run program
   job = serverless.run(
       program=program,
       arguments={
           "circuits": circuits
       }
   )

Step 3: monitor job status

   job.status()
   # <JobStatus.SUCCEEDED: 'SUCCEEDED'>
    
   # or get logs
   job.logs()

Step 4: get results

   job.result()
   # {"quasi_dists": [
   #  {"0": 0.25, "1": 0.25, "2": 0.2499999999999999, "3": 0.2499999999999999},
   #  {"0": 0.1512273969460124, "1": 0.0400459556274728, "6": 0.1693190975212014, "7": 0.6394075499053132},
   #  {"0": 0.25, "1": 0.25, "4": 0.2499999999999999, "5": 0.2499999999999999}
   # ]}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantum_serverless-0.1.2.tar.gz (30.1 kB view details)

Uploaded Source

Built Distribution

quantum_serverless-0.1.2-py3-none-any.whl (45.9 kB view details)

Uploaded Python 3

File details

Details for the file quantum_serverless-0.1.2.tar.gz.

File metadata

  • Download URL: quantum_serverless-0.1.2.tar.gz
  • Upload date:
  • Size: 30.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for quantum_serverless-0.1.2.tar.gz
Algorithm Hash digest
SHA256 a7d98a43aec594b7733fa003ea37274046fc9d832c517565f41ed39b04179391
MD5 b3f2cf0b9df01fcab58a3173be35d631
BLAKE2b-256 0cd8d5ce5139d25615827a1548062453c78f94805184f2f8cfcc0c02fb8ffc1a

See more details on using hashes here.

File details

Details for the file quantum_serverless-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for quantum_serverless-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 958478e379ace6f6bfb2c8943c20fadfc6d0826419eba9aaee24a510fdf7cdad
MD5 8f4ca024f9e245782a260ee214e49a50
BLAKE2b-256 74b1d1ff3c38b38e0e079dd8b03eb6e66076a42ec7be12e7a7e84444010bcf49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page