Skip to main content

No project description provided

Project description

Stability Client verify process License Code style: Black Python Qiskit

Quantum Serverless client

diagram

Installation

pip install quantum_serverless

Documentation

Full docs can be found at https://qiskit-extensions.github.io/quantum-serverless/

Usage

Step 1: write pattern

  from quantum_serverless import distribute_task, get, get_arguments, save_result

   from qiskit import QuantumCircuit
   from qiskit.circuit.random import random_circuit
   from qiskit.primitives import Sampler
   from qiskit.quantum_info import SparsePauliOp

   # 1. let's annotate out function to convert it
   # to distributed async function
   # using `distribute_task` decorator
   @distribute_task()
   def distributed_sample(circuit: QuantumCircuit):
       """Calculates quasi dists as a distributed function."""
       return Sampler().run(circuit).result().quasi_dists[0]


   # 2. our program will have one arguments
   # `circuits` which will store list of circuits
   # we want to sample in parallel.
   # Let's use `get_arguments` funciton
   # to access all program arguments
   arguments = get_arguments()
   circuits = arguments.get("circuits", [])

   # 3. run our functions in a loop
   # and get execution references back
   function_references = [
       distributed_sample(circuit)
       for circuit in circuits
   ]

   # 4. `get` function will collect all
   # results from distributed functions
   collected_results = get(function_references)

   # 5. `save_result` will save results of program execution
   # so we can access it later
   save_result({
       "quasi_dists": collected_results
   })

Step 2: run pattern

   from quantum_serverless import ServerlessProvider, QiskitPattern
   from qiskit.circuit.random import random_circuit

   serverless = ServerlessProvider(
       username="<USERNAME>", 
       password="<PASSWORD>",
       host="<GATEWAY_ADDRESS>",
   )

   # create program
   program = QiskitPattern(
       title="Quickstart",
       entrypoint="pattern.py",
       working_dir="./src"
   )

   # create inputs to our program
   circuits = []
   for _ in range(3):
       circuit = random_circuit(3, 2)
       circuit.measure_all()
       circuits.append(circuit)

   # run program
   job = serverless.run(
       program=program,
       arguments={
           "circuits": circuits
       }
   )

Step 3: monitor job status

   job.status()
   # 'DONE'
    
   # or get logs
   job.logs()

Step 4: get results

   job.result()
   # {"quasi_dists": [
   #  {"0": 0.25, "1": 0.25, "2": 0.2499999999999999, "3": 0.2499999999999999},
   #  {"0": 0.1512273969460124, "1": 0.0400459556274728, "6": 0.1693190975212014, "7": 0.6394075499053132},
   #  {"0": 0.25, "1": 0.25, "4": 0.2499999999999999, "5": 0.2499999999999999}
   # ]}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantum_serverless-0.10.0.tar.gz (33.4 kB view details)

Uploaded Source

Built Distribution

quantum_serverless-0.10.0-py3-none-any.whl (49.3 kB view details)

Uploaded Python 3

File details

Details for the file quantum_serverless-0.10.0.tar.gz.

File metadata

  • Download URL: quantum_serverless-0.10.0.tar.gz
  • Upload date:
  • Size: 33.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.14

File hashes

Hashes for quantum_serverless-0.10.0.tar.gz
Algorithm Hash digest
SHA256 1cfcc556ff9b476309c35b4761490355c977987710e78fcce78bd48d0c57d187
MD5 cdab505c20a07204e7fcce3967572808
BLAKE2b-256 196aaf3d4c79a3bb9de16ebdeea78062649ef588a0c51c9565463358254599e9

See more details on using hashes here.

File details

Details for the file quantum_serverless-0.10.0-py3-none-any.whl.

File metadata

File hashes

Hashes for quantum_serverless-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ffae3007fbdd5748c96d891848a4c19803d12d3f93053c183981f1fe240fa8d8
MD5 22c6887a4851539191ee4646b3d7c8b2
BLAKE2b-256 e515e7dc16d4ebb72b0f2a0c6fd1d06be1addace9c75fcf1723bc1b93a7826c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page