Skip to main content

No project description provided

Project description

Stability Client verify process License Code style: Black Python Qiskit

Quantum Serverless client

diagram

Installation

pip install quantum_serverless

Documentation

Full docs can be found at https://qiskit-extensions.github.io/quantum-serverless/

Usage

Step 1: write program

  from quantum_serverless import distribute_task, get, get_arguments, save_result

   from qiskit import QuantumCircuit
   from qiskit.circuit.random import random_circuit
   from qiskit.primitives import Sampler
   from qiskit.quantum_info import SparsePauliOp

   # 1. let's annotate out function to convert it
   # to distributed async function
   # using `distribute_task` decorator
   @distribute_task()
   def distributed_sample(circuit: QuantumCircuit):
       """Calculates quasi dists as a distributed function."""
       return Sampler().run(circuit).result().quasi_dists[0]


   # 2. our program will have one arguments
   # `circuits` which will store list of circuits
   # we want to sample in parallel.
   # Let's use `get_arguments` funciton
   # to access all program arguments
   arguments = get_arguments()
   circuits = arguments.get("circuits", [])

   # 3. run our functions in a loop
   # and get execution references back
   function_references = [
       distributed_sample(circuit)
       for circuit in circuits
   ]

   # 4. `get` function will collect all
   # results from distributed functions
   collected_results = get(function_references)

   # 5. `save_result` will save results of program execution
   # so we can access it later
   save_result({
       "quasi_dists": collected_results
   })

Step 2: run program

   from quantum_serverless import QuantumServerless, GatewayProvider
   from qiskit.circuit.random import random_circuit

   serverless = QuantumServerless(GatewayProvider(
       username="<USERNAME>", 
       password="<PASSWORD>",
       host="<GATEWAY_ADDRESS>",
   ))

   # create program
   program = Program(
       title="Quickstart",
       entrypoint="program.py",
       working_dir="./src"
   )

   # create inputs to our program
   circuits = []
   for _ in range(3):
       circuit = random_circuit(3, 2)
       circuit.measure_all()
       circuits.append(circuit)

   # run program
   job = serverless.run(
       program=program,
       arguments={
           "circuits": circuits
       }
   )

Step 3: monitor job status

   job.status()
   # <JobStatus.SUCCEEDED: 'SUCCEEDED'>
    
   # or get logs
   job.logs()

Step 4: get results

   job.result()
   # {"quasi_dists": [
   #  {"0": 0.25, "1": 0.25, "2": 0.2499999999999999, "3": 0.2499999999999999},
   #  {"0": 0.1512273969460124, "1": 0.0400459556274728, "6": 0.1693190975212014, "7": 0.6394075499053132},
   #  {"0": 0.25, "1": 0.25, "4": 0.2499999999999999, "5": 0.2499999999999999}
   # ]}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantum_serverless-0.5.0.tar.gz (32.3 kB view details)

Uploaded Source

Built Distribution

quantum_serverless-0.5.0-py3-none-any.whl (50.1 kB view details)

Uploaded Python 3

File details

Details for the file quantum_serverless-0.5.0.tar.gz.

File metadata

  • Download URL: quantum_serverless-0.5.0.tar.gz
  • Upload date:
  • Size: 32.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for quantum_serverless-0.5.0.tar.gz
Algorithm Hash digest
SHA256 53a08494635b1adc70e99fad7cdf4550d84736dd062ac6be57e0efdcd765fae0
MD5 718dc0248d196ac414e609a6d3d0ec2b
BLAKE2b-256 187756483306ba27b35d9ed449d0af577a4739b6b87c8be136478a5193ab22a3

See more details on using hashes here.

File details

Details for the file quantum_serverless-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for quantum_serverless-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 12ec8c8b2fe7c996c29eda748cc39bfb1027e48989df194826d9e7c1bad0e17d
MD5 5055662c017426e0c00938aad0f9561c
BLAKE2b-256 fd18851941c26ed0bed56ae847602205c04113240b600943a5643908e737cdf5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page