Skip to main content

No project description provided

Project description

Stability Client verify process License Code style: Black Python Qiskit

Quantum Serverless client

diagram

Installation

pip install quantum_serverless

Documentation

Full docs can be found at https://qiskit-extensions.github.io/quantum-serverless/

Usage

Step 1: write program

  from quantum_serverless import distribute_task, get, get_arguments, save_result

   from qiskit import QuantumCircuit
   from qiskit.circuit.random import random_circuit
   from qiskit.primitives import Sampler
   from qiskit.quantum_info import SparsePauliOp

   # 1. let's annotate out function to convert it
   # to distributed async function
   # using `distribute_task` decorator
   @distribute_task()
   def distributed_sample(circuit: QuantumCircuit):
       """Calculates quasi dists as a distributed function."""
       return Sampler().run(circuit).result().quasi_dists[0]


   # 2. our program will have one arguments
   # `circuits` which will store list of circuits
   # we want to sample in parallel.
   # Let's use `get_arguments` funciton
   # to access all program arguments
   arguments = get_arguments()
   circuits = arguments.get("circuits", [])

   # 3. run our functions in a loop
   # and get execution references back
   function_references = [
       distributed_sample(circuit)
       for circuit in circuits
   ]

   # 4. `get` function will collect all
   # results from distributed functions
   collected_results = get(function_references)

   # 5. `save_result` will save results of program execution
   # so we can access it later
   save_result({
       "quasi_dists": collected_results
   })

Step 2: run program

   from quantum_serverless import QuantumServerless, GatewayProvider
   from qiskit.circuit.random import random_circuit

   serverless = QuantumServerless(GatewayProvider(
       username="<USERNAME>", 
       password="<PASSWORD>",
       host="<GATEWAY_ADDRESS>",
   ))

   # create program
   program = Program(
       title="Quickstart",
       entrypoint="program.py",
       working_dir="./src"
   )

   # create inputs to our program
   circuits = []
   for _ in range(3):
       circuit = random_circuit(3, 2)
       circuit.measure_all()
       circuits.append(circuit)

   # run program
   job = serverless.run(
       program=program,
       arguments={
           "circuits": circuits
       }
   )

Step 3: monitor job status

   job.status()
   # <JobStatus.SUCCEEDED: 'SUCCEEDED'>
    
   # or get logs
   job.logs()

Step 4: get results

   job.result()
   # {"quasi_dists": [
   #  {"0": 0.25, "1": 0.25, "2": 0.2499999999999999, "3": 0.2499999999999999},
   #  {"0": 0.1512273969460124, "1": 0.0400459556274728, "6": 0.1693190975212014, "7": 0.6394075499053132},
   #  {"0": 0.25, "1": 0.25, "4": 0.2499999999999999, "5": 0.2499999999999999}
   # ]}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantum_serverless-0.6.1.tar.gz (31.1 kB view details)

Uploaded Source

Built Distribution

quantum_serverless-0.6.1-py3-none-any.whl (47.5 kB view details)

Uploaded Python 3

File details

Details for the file quantum_serverless-0.6.1.tar.gz.

File metadata

  • Download URL: quantum_serverless-0.6.1.tar.gz
  • Upload date:
  • Size: 31.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for quantum_serverless-0.6.1.tar.gz
Algorithm Hash digest
SHA256 64f691a18aff5363868b536031c3b37bfc57eaf0c9c1430d3be0e659887ce84e
MD5 db81d78b5d5fd90ab41c68fd638742d7
BLAKE2b-256 509c8af54d9f05d6c09e21aa015e9386559589d1662e7caad69e40bb5371ba3f

See more details on using hashes here.

File details

Details for the file quantum_serverless-0.6.1-py3-none-any.whl.

File metadata

File hashes

Hashes for quantum_serverless-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c3157b6f30b396dccd43d72f3fb2052ce99d164dc803cd5fcb526dc2865beebf
MD5 67ca9db6dd76cb5b3239b2dc379fff97
BLAKE2b-256 c891f69c2483ada18a9f32636bcd0f2361424dc6bfe93ed193f78a0d34cfbf38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page