Skip to main content

No project description provided

Project description

Stability Client verify process License Code style: Black Python Qiskit

Quantum Serverless client

diagram

Installation

pip install quantum_serverless

Documentation

Full docs can be found at https://qiskit-extensions.github.io/quantum-serverless/

Usage

Step 1: write pattern

  from quantum_serverless import distribute_task, get, get_arguments, save_result

   from qiskit import QuantumCircuit
   from qiskit.circuit.random import random_circuit
   from qiskit.primitives import Sampler
   from qiskit.quantum_info import SparsePauliOp

   # 1. let's annotate out function to convert it
   # to distributed async function
   # using `distribute_task` decorator
   @distribute_task()
   def distributed_sample(circuit: QuantumCircuit):
       """Calculates quasi dists as a distributed function."""
       return Sampler().run(circuit).result().quasi_dists[0]


   # 2. our program will have one arguments
   # `circuits` which will store list of circuits
   # we want to sample in parallel.
   # Let's use `get_arguments` funciton
   # to access all program arguments
   arguments = get_arguments()
   circuits = arguments.get("circuits", [])

   # 3. run our functions in a loop
   # and get execution references back
   function_references = [
       distributed_sample(circuit)
       for circuit in circuits
   ]

   # 4. `get` function will collect all
   # results from distributed functions
   collected_results = get(function_references)

   # 5. `save_result` will save results of program execution
   # so we can access it later
   save_result({
       "quasi_dists": collected_results
   })

Step 2: run pattern

   from quantum_serverless import ServerlessProvider, QiskitPattern
   from qiskit.circuit.random import random_circuit

   serverless = ServerlessProvider(
       username="<USERNAME>", 
       password="<PASSWORD>",
       host="<GATEWAY_ADDRESS>",
   )

   # create program
   program = QiskitPattern(
       title="Quickstart",
       entrypoint="pattern.py",
       working_dir="./src"
   )

   # create inputs to our program
   circuits = []
   for _ in range(3):
       circuit = random_circuit(3, 2)
       circuit.measure_all()
       circuits.append(circuit)

   # run program
   job = serverless.run(
       program=program,
       arguments={
           "circuits": circuits
       }
   )

Step 3: monitor job status

   job.status()
   # 'DONE'
    
   # or get logs
   job.logs()

Step 4: get results

   job.result()
   # {"quasi_dists": [
   #  {"0": 0.25, "1": 0.25, "2": 0.2499999999999999, "3": 0.2499999999999999},
   #  {"0": 0.1512273969460124, "1": 0.0400459556274728, "6": 0.1693190975212014, "7": 0.6394075499053132},
   #  {"0": 0.25, "1": 0.25, "4": 0.2499999999999999, "5": 0.2499999999999999}
   # ]}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantum_serverless-0.9.0.tar.gz (35.6 kB view details)

Uploaded Source

Built Distribution

quantum_serverless-0.9.0-py3-none-any.whl (52.2 kB view details)

Uploaded Python 3

File details

Details for the file quantum_serverless-0.9.0.tar.gz.

File metadata

  • Download URL: quantum_serverless-0.9.0.tar.gz
  • Upload date:
  • Size: 35.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for quantum_serverless-0.9.0.tar.gz
Algorithm Hash digest
SHA256 13502981d40f8d887fd5f35177bd735c337cc22c4307fa6644b0f09b26333e0b
MD5 23ff0920eab4e4b6c8d9f88f6a26d3cd
BLAKE2b-256 88880f9e219fda5aec81530e59b484960fa6f39dade313c3fe05beab03b61363

See more details on using hashes here.

File details

Details for the file quantum_serverless-0.9.0-py3-none-any.whl.

File metadata

File hashes

Hashes for quantum_serverless-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 00becb0f3ca4b20b224ef7115bb8209c72f4fbb1df33c9f0a0e03863652c4aa6
MD5 20bac3c442f818fb3a82a47c0508641a
BLAKE2b-256 950c7790d3c5960e690c166750c2206b8f4b8f456dcb97e2aadf9f6a74057151

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page