A Python interface to the ANU Quantum Random Numbers Server
Project description
This project provides tools for interacting with The ANU Quantum Random Number Generator (qrng.anu.edu.au). It communicates with their JSON API and provides a qrandom command-line tool, a Python API, and a Linux /dev/qrandom character device.
Installing
$ virtualenv env $ source env/bin/activate $ pip install quantumrandom
Command-line tool
$ qrandom --int --min 5 --max 15 7 $ qrandom --binary ���I�%��e(�1��c��Ee�4�������j�Կ��=�^H�c�u oq��G��Z�^���fK�0_��h��s�b��AE=�rR~���(�^Q�)4��{c�������X{f��a�Bk�N%#W +a�a̙�IB�,S�!ꀔd�2H~�X�Z����R��.f ... $ qrandom --hex 1dc59fde43b5045120453186d45653dd455bd8e6fc7d8c591f0018fa9261ab2835eb210e8 e267cf35a54c02ce2a93b3ec448c4c7aa84fdedb61c7b0d87c9e7acf8e9fdadc8d68bcaa5a ... $ qrandom --binary | dd of=data ^C1752+0 records in 1752+0 records out 897024 bytes (897 kB) copied, 77.7588 s, 11.5 kB/s
Creating /dev/qrandom
quantumrandom comes equipped with a multi-threaded character device in userspace. When read from, this device fires up a bunch of threads to fetch data. Not only can you utilize this as a rng, but you can also feed this data back into your system’s entropy pool.
In order to build it’s dependencies, you’ll need the following packages installed: svn gcc-c++ fuse-devel gccxml libattr-devel. On Fedora 17 and newer, you’ll also need the kernel-modules-extra package installed for the cuse module.
pip install ctypeslib hg+https://cusepy.googlecode.com/hg sudo modprobe cuse sudo chmod 666 /dev/cuse qrandom-dev sudo chmod 666 /dev/qrandom
By default it will use 3 threads, which can be changed by passing ‘-t #’ into the qrandom-dev.
Testing the randomness for FIPS 140-2 compliance
$ cat /dev/qrandom | rngtest --blockcount=1000 rngtest: bits received from input: 20000032 rngtest: FIPS 140-2 successes: 1000 rngtest: FIPS 140-2 failures: 0 rngtest: FIPS 140-2(2001-10-10) Monobit: 0 rngtest: FIPS 140-2(2001-10-10) Poker: 0 rngtest: FIPS 140-2(2001-10-10) Runs: 0 rngtest: FIPS 140-2(2001-10-10) Long run: 0 rngtest: FIPS 140-2(2001-10-10) Continuous run: 0 rngtest: input channel speed: (min=17.696; avg=386.711; max=4882812.500)Kibits/s rngtest: FIPS tests speed: (min=10.949; avg=94.538; max=161.640)Mibits/s rngtest: Program run time: 50708319 microseconds
Adding entropy to the Linux random number generator
sudo rngd --rng-device=/dev/qrandom --random-device=/dev/random --timeout=5 --foreground
Monitoring your available entropy levels
watch -n 1 cat /proc/sys/kernel/random/entropy_avail
Python API
The quantumrandom Python module contains a low-level get_data function, which is modelled after the ANU Quantum Random Number Generator’s JSON API. It returns variable-length lists of either uint16 or hex16 data.
>>> quantumrandom.get_data() [26646] >>> quantumrandom.get_data(data_type='uint16', array_length=5) [42796, 32457, 9242, 11316, 21078] >>> quantumrandom.get_data(data_type='hex16', array_length=5, block_size=2) ['f1d5', '0eb3', '1119', '7cfd', '64ce']
Valid data_type values are uint16 and hex16, and the array_length and block_size cannot be larger than 1024. If for some reason the API call is not successful, or the incorrect amount of data is returned from the server, this function will raise an exception.
Based on this get_data function, quantumrandom also provides a bunch of higher-level helper functions that make easy to perform a variety of tasks.
>>> quantumrandom.randint(0, 20) 5 >>> quantumrandom.hex()[:10] '8272613343' >>> quantumrandom.binary()[0] '\xa5' >>> len(quantumrandom.binary()) 10000 >>> quantumrandom.uint16() numpy.array([24094, 13944, 22109, 22908, 34878, 33797, 47221, 21485, 37930, ...], dtype=numpy.uint16) >>> quantumrandom.uint16().data[:10] '\x87\x7fY.\xcc\xab\xea\r\x1c`'
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file quantumrandom-1.8.tar.gz
.
File metadata
- Download URL: quantumrandom-1.8.tar.gz
- Upload date:
- Size: 7.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2f0dc55e470c57e908f1a1cf510a29fe43cd707fa74defbb48d1c0af58585594 |
|
MD5 | d3713f27d9ea3562cd7fe6ac8a8d53e8 |
|
BLAKE2b-256 | c27fdddaa881feb6a4124bb345c01a1bf5b03b4ce6701dbc6b46d7ccc20899c4 |