Skip to main content

A library of multithreaded iterator workflows.

Project description

Build Status

Quenouille

A library of multithreaded iterator workflows for python.

Installation

You can install quenouille with pip with the following command:

pip install quenouille

Usage

imap

Function lazily consuming an iterator and applying the desired function over the yielded items in a multithreaded fashion. The function will yield results in an order consistent with the provided iterator.

Furthermore, it's possible to tweak options regarding group parallelism if you ever need to ensure that a limited number of threads may perform their tasks over the same group, e.g. a domain name when fetching urls: you can give a function extracting the group from the current task, you can tweak the maximum number of threads working on a same group and finally you can edit a group's buffer size to let the function load more values into memory in hope of finding next ones it can process without needing to wait.

If you don't care about output order and want snappier performance, the library also exports an imap_unordered method.

import csv
from quenouille import imap

# Example fetching urls from a CSV file
with open(csv_path, 'r') as f:
  reader = csv.DictReader(f)

  urls = (line['url'] for line in reader)

  # The `fetch` function remains to be implemented by the reader
  for html in imap(urls, fetch, 10):

    # Results will be yielded in lines order
    print(html)

Arguments

  • iterable iterable: Any python iterable.
  • func callable: Function used to perform desired tasks. The function takes any item yielded from the given iterable as sole argument. Note that since this function will be dispatched in a multithreaded environment, it should be thread-safe.
  • threads int: Number of threads to use.
  • group ?callable [None]: Function taking a single item yielded by the provided iterable and returning its group.
  • group_parallelism ?int [Infinity]: Maximum number of threads that can work on the same group at once. Defaults to no limit. This option requires that you give a function as the group argument.
  • group_buffer_size ?int [1]: Maximum number of values that will be loaded into memory from the iterable before waiting for other relevant threads to be available.
  • group_throttle ?float|?callable [0]: throttle time to wait (in seconds) between two tasks on the same group. Can also be a function taking the group and item and returning throttle time.
  • group_throttle_entropy ?float [0]: additional random throttle time between 0 and given value. Useful to simulate erratic behavior.
  • listener callable [None]: A function called on certain events with the name of the event and the related item.

Events

  • start: Emitted when the given function actually starts to work on a yielded item.

imap_unordered

Function lazily consuming an iterator and applying the desired function over the yielded items in a multithreaded fashion. The function will yield results in arbitrary order based on thread completion.

Furthermore, it's possible to tweak options regarding group parallelism if you ever need to ensure that a limited number of threads may perform their tasks over the same group, e.g. a domain name when fetching urls: you can give a function extracting the group from the current task, you can tweak the maximum number of threads working on a same group and finally you can edit a group's buffer size to let the function load more values into memory in hope of finding next ones it can process without needing to wait.

If output order is important to you, the library also exports an imap method.

import csv
from quenouille import imap_unordered

# Example fetching urls from a CSV file
with open(csv_path, 'r') as f:
  reader = csv.DictReader(f)

  urls = (line['url'] for line in reader)

  # The `fetch` function remains to be implemented by the reader
  for html in imap_unordered(urls, fetch, 10):

    # Results will be yielded in arbitrary order as soon as tasks complete
    print(html)

Arguments

  • iterable iterable: Any python iterable.
  • func callable: Function used to perform desired tasks. The function takes any item yielded from the given iterable as sole argument. Note that since this function will be dispatched in a multithreaded environment, it should be thread-safe.
  • threads int: Number of threads to use.
  • group ?callable [None]: Function taking a single item yielded by the provided iterable and returning its group.
  • group_parallelism ?int [Infinity]: Maximum number of threads that can work on the same group at once. Defaults to no limit. This option requires that you give a function as the group argument.
  • group_buffer_size ?int [1]: Maximum number of values that will be loaded into memory from the iterable before waiting for other relevant threads to be available.
  • group_throttle ?float|?callable [0]: throttle time to wait (in seconds) between two tasks on the same group. Can also be a function taking the group and item and returning throttle time.
  • group_throttle_entropy ?float [0]: additional random throttle time between 0 and given value. Useful to simulate erratic behavior.
  • listener callable [None]: A function called on certain events with the name of the event and the related item.

Events

  • start: Emitted when the given function actually starts to work on a yielded item.

Caveats

On having more threads than the size of the consumed iterator

This should be safe but note that it can have a slight performance cost related to the fact that the library will allocate and terminate threads that won't be used anyway. So you should probably clamp the number of threads based upon the size of your iterator if you know it beforehand (and use a condition not to call imap etc. on an empty iterator, for instance).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quenouille-0.6.4.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

quenouille-0.6.4-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file quenouille-0.6.4.tar.gz.

File metadata

  • Download URL: quenouille-0.6.4.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.6.1 requests/2.25.1 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.10

File hashes

Hashes for quenouille-0.6.4.tar.gz
Algorithm Hash digest
SHA256 a551377af709e113726d34fdb81d0e1117035b23fdd44119a90939106cf130b7
MD5 bcf95359febafe74a0e5b3a4c5a7f84b
BLAKE2b-256 137a2574f9a50d28a270411604dd9c6b6c3be83ad85cef103abce9a158298cae

See more details on using hashes here.

File details

Details for the file quenouille-0.6.4-py3-none-any.whl.

File metadata

  • Download URL: quenouille-0.6.4-py3-none-any.whl
  • Upload date:
  • Size: 9.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.6.1 requests/2.25.1 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.10

File hashes

Hashes for quenouille-0.6.4-py3-none-any.whl
Algorithm Hash digest
SHA256 d2a88687a95bb64beb1474f290181f4ea121054d5acc7bd78d928cb4786ed565
MD5 75ecc427b1ca5c60742e54c27056bc72
BLAKE2b-256 cf128f3367537874c08f67c83df64bfb4f4f516f1edde894bd6d853bb8fff6a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page