Skip to main content

Export Prometheus metrics generated from SQL queries.

Project description

Latest Version Build Status Coverage Status

query-exporter is a Prometheus exporter which allows collecting metrics from database queries, at specified time intervals.

It uses SQLAlchemy to connect to different database engines, including PostgreSQL, MySQL, Oracle and Microsoft SQL Server.

Each query can be run on multiple databases, and update multiple metrics.

The application is called with a configuration file that looks like this:

databases:
  db1:
    dsn: sqlite://
  db2:
    dsn: sqlite://

metrics:
  metric1:
    type: gauge
    description: A sample gauge
  metric2:
    type: summary
    description: A sample summary
  metric3:
    type: histogram
    description: A sample histogram
    buckets: [10, 20, 50, 100, 1000]

queries:
  query1:
    interval: 5
    databases: [db1]
    metrics: [metric1]
    sql: SELECT random() / 1000000000000000
  query2:
    interval: 20
    databases: [db1, db2]
    metrics: [metric2, metric3]
    sql: |
      SELECT abs(random() / 1000000000000000),
             abs(random() / 10000000000000000)

The dsn connection string has the following format:

dialect[+driver]://[username:password][@host:port]/database

(see SQLAlchemy documentation for details on the available options).

The metrics list in the query configuration must match values returned by the query defined in sql.

The interval value is interpreted as seconds if no suffix is specified; valid suffix are s, m, h, d. Only integer values can be specified. If no value is specified (or specified as null), the query is executed at every HTTP request.

Queries will usually return a single row, but multiple rows are supported, and each row will cause an update of the related metrics. This is relevant for any kind of metric except gauges, which will be effectively updated to the value from the last row.

For the configuration above, exported metrics look like this:

# HELP metric1 A sample gauge
# TYPE metric1 gauge
metric1{database="db1"} 1549.0
# HELP metric2 A sample summary
# TYPE metric2 summary
metric2_count{database="db2"} 6.0
metric2_sum{database="db2"} 25329.0
metric2_count{database="db1"} 6.0
metric2_sum{database="db1"} 30170.0
# HELP metric3 A sample histogram
# TYPE metric3 histogram
metric3_bucket{database="db2",le="10.0"} 0.0
metric3_bucket{database="db2",le="20.0"} 1.0
metric3_bucket{database="db2",le="50.0"} 2.0
metric3_bucket{database="db2",le="100.0"} 2.0
metric3_bucket{database="db2",le="1000.0"} 6.0
metric3_bucket{database="db2",le="+Inf"} 6.0
metric3_count{database="db2"} 6.0
metric3_sum{database="db2"} 2542.0
metric3_bucket{database="db1",le="10.0"} 1.0
metric3_bucket{database="db1",le="20.0"} 1.0
metric3_bucket{database="db1",le="50.0"} 1.0
metric3_bucket{database="db1",le="100.0"} 2.0
metric3_bucket{database="db1",le="1000.0"} 6.0
metric3_bucket{database="db1",le="+Inf"} 6.0
metric3_count{database="db1"} 6.0
metric3_sum{database="db1"} 2901.0

Metrics are automatically tagged with the database label so that indipendent series are generated for each database.

Database engines

SQLAlchemy doesn’t depend on specific Python database modules at installation. This means additional modules might need to be installed for engines in use (e.g. psycopg2 for PostgreSQL or MySQL-python for MySQL).

See supported databases for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

query-exporter-1.3.0.tar.gz (24.4 kB view details)

Uploaded Source

Built Distribution

query_exporter-1.3.0-py3-none-any.whl (15.8 kB view details)

Uploaded Python 3

File details

Details for the file query-exporter-1.3.0.tar.gz.

File metadata

File hashes

Hashes for query-exporter-1.3.0.tar.gz
Algorithm Hash digest
SHA256 94da98db2a138a0d45d9580852adb358aeae17674ecbf94d4d0e67e31d59144a
MD5 9db108e9c18a1c4ce1481bf30a62ee27
BLAKE2b-256 a686982b47f6c80f2458dcac788fd147cde048e3f6a09238023c63c3114163d3

See more details on using hashes here.

File details

Details for the file query_exporter-1.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for query_exporter-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 607b1982e6b8680ed405bccab19d8c96b2f3297ad6fef828d5a3554268e41f50
MD5 5c15bac6a5f6bb71cbe952e647db50f1
BLAKE2b-256 a3f1938e899b30043b6b628d7f889567762fade7df33db736323a6237d541bd3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page