Skip to main content

Export Prometheus metrics generated from SQL queries.

Project description

Latest Version Build Status Coverage Status

query-exporter is a Prometheus exporter which allows collecting metrics from database queries, at specified time intervals.

It uses SQLAlchemy to connect to different database engines, including PostgreSQL, MySQL, Oracle and Microsoft SQL Server.

Each query can be run on multiple databases, and update multiple metrics.

The application is called with a configuration file that looks like this:

databases:
  db1:
    dsn: sqlite://
  db2:
    dsn: sqlite://

metrics:
  metric1:
    type: gauge
    description: A sample gauge
  metric2:
    type: summary
    description: A sample summary
  metric3:
    type: histogram
    description: A sample histogram
    buckets: [10, 20, 50, 100, 1000]

queries:
  query1:
    interval: 5
    databases: [db1]
    metrics: [metric1]
    sql: SELECT random() / 1000000000000000
  query2:
    interval: 20
    databases: [db1, db2]
    metrics: [metric2, metric3]
    sql: |
      SELECT abs(random() / 1000000000000000),
             abs(random() / 10000000000000000)

The dsn connection string has the following format:

dialect[+driver]://[username:password][@host:port]/database

(see SQLAlchemy documentation for details on the available options).

The metrics list in the query configuration must match values returned by the query defined in sql.

The interval value is interpreted as seconds if no suffix is specified; valid suffix are s, m, h, d. Only integer values can be specified. If no value is specified (or specified as null), the query is executed at every HTTP request.

Queries will usually return a single row, but multiple rows are supported, and each row will cause an update of the related metrics. This is relevant for any kind of metric except gauges, which will be effectively updated to the value from the last row.

For the configuration above, exported metrics look like this:

# HELP metric1 A sample gauge
# TYPE metric1 gauge
metric1{database="db1"} 1549.0
# HELP metric2 A sample summary
# TYPE metric2 summary
metric2_count{database="db2"} 6.0
metric2_sum{database="db2"} 25329.0
metric2_count{database="db1"} 6.0
metric2_sum{database="db1"} 30170.0
# HELP metric3 A sample histogram
# TYPE metric3 histogram
metric3_bucket{database="db2",le="10.0"} 0.0
metric3_bucket{database="db2",le="20.0"} 1.0
metric3_bucket{database="db2",le="50.0"} 2.0
metric3_bucket{database="db2",le="100.0"} 2.0
metric3_bucket{database="db2",le="1000.0"} 6.0
metric3_bucket{database="db2",le="+Inf"} 6.0
metric3_count{database="db2"} 6.0
metric3_sum{database="db2"} 2542.0
metric3_bucket{database="db1",le="10.0"} 1.0
metric3_bucket{database="db1",le="20.0"} 1.0
metric3_bucket{database="db1",le="50.0"} 1.0
metric3_bucket{database="db1",le="100.0"} 2.0
metric3_bucket{database="db1",le="1000.0"} 6.0
metric3_bucket{database="db1",le="+Inf"} 6.0
metric3_count{database="db1"} 6.0
metric3_sum{database="db1"} 2901.0

Metrics are automatically tagged with the database label so that indipendent series are generated for each database.

Database engines

SQLAlchemy doesn’t depend on specific Python database modules at installation. This means additional modules might need to be installed for engines in use (e.g. psycopg2 for PostgreSQL or MySQL-python for MySQL).

See supported databases for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

query-exporter-1.4.0.tar.gz (24.6 kB view details)

Uploaded Source

Built Distribution

query_exporter-1.4.0-py3-none-any.whl (15.8 kB view details)

Uploaded Python 3

File details

Details for the file query-exporter-1.4.0.tar.gz.

File metadata

File hashes

Hashes for query-exporter-1.4.0.tar.gz
Algorithm Hash digest
SHA256 84ae6468798018f995e629be1bd15c9e604ba742af92eecbe132afe480d456ff
MD5 75aa2e9866deffd6383a092cfcf10ade
BLAKE2b-256 307e86aca2e886f5417e0c151050bec9339a16946bb8309c3532f7aa1ba2afed

See more details on using hashes here.

File details

Details for the file query_exporter-1.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for query_exporter-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3acbc325877c5bd7dbeb297f6dd700961019007e960989586c45ff60a82bf9d0
MD5 78bd3a69a2c65e5256bc8d0797a9fd76
BLAKE2b-256 8e62807f030f9d71b6d12bf07c6f22558f2332011a60698531056f04a954c49b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page