Skip to main content

Pyspark helper methods to maximize developer efficiency

Project description

Quinn

CI

Pyspark helper methods to maximize developer productivity.

Quinn validates DataFrames, extends core classes, defines DataFrame transformations, and provides SQL functions.

quinn

Setup

Quinn is uploaded to PyPi and can be installed with this command:

pip install quinn

Pyspark Core Class Extensions

from quinn.extensions import *

Column Extensions

isFalsy()

source_df.withColumn("is_stuff_falsy", F.col("has_stuff").isFalsy())

Returns True if has_stuff is None or False.

isTruthy()

source_df.withColumn("is_stuff_truthy", F.col("has_stuff").isTruthy())

Returns True unless has_stuff is None or False.

isNullOrBlank()

source_df.withColumn("is_blah_null_or_blank", F.col("blah").isNullOrBlank())

Returns True if blah is null or blank (the empty string or a string that only contains whitespace).

isNotIn()

source_df.withColumn("is_not_bobs_hobby", F.col("fun_thing").isNotIn(bobs_hobbies))

Returns True if fun_thing is not included in the bobs_hobbies list.

nullBetween()

source_df.withColumn("is_between", F.col("age").nullBetween(F.col("lower_age"), F.col("upper_age")))

Returns True if age is between lower_age and upper_age. If lower_age is populated and upper_age is null, it will return True if age is greater than or equal to lower_age. If lower_age is null and upper_age is populate, it will return True if age is lower than or equal to upper_age.

SparkSession Extensions

create_df()

spark.create_df(
    [("jose", "a"), ("li", "b"), ("sam", "c")],
    [("name", StringType(), True), ("blah", StringType(), True)]
)

Creates DataFrame with a syntax that's less verbose than the built-in createDataFrame method.

DataFrame Extensions

transform()

source_df\
    .transform(lambda df: with_greeting(df))\
    .transform(lambda df: with_something(df, "crazy"))

Allows for multiple DataFrame transformations to be run and executed.

Quinn Helper Functions

import quinn

DataFrame Validations

validate_presence_of_columns()

quinn.validate_presence_of_columns(source_df, ["name", "age", "fun"])

Raises an exception unless source_df contains the name, age, and fun column.

validate_schema()

quinn.validate_schema(source_df, required_schema)

Raises an exception unless source_df contains all the StructFields defined in the required_schema.

validate_absence_of_columns()

quinn.validate_absence_of_columns(source_df, ["age", "cool"])

Raises an exception if source_df contains age or cool columns.

Functions

single_space()

actual_df = source_df.withColumn(
    "words_single_spaced",
    quinn.single_space(col("words"))
)

Replaces all multispaces with single spaces (e.g. changes "this has some" to "this has some".

remove_all_whitespace()

actual_df = source_df.withColumn(
    "words_without_whitespace",
    quinn.remove_all_whitespace(col("words"))
)

Removes all whitespace in a string (e.g. changes "this has some" to "thishassome".

anti_trim()

actual_df = source_df.withColumn(
    "words_anti_trimmed",
    quinn.anti_trim(col("words"))
)

Removes all inner whitespace, but doesn't delete leading or trailing whitespace (e.g. changes " this has some " to " thishassome ".

remove_non_word_characters()

actual_df = source_df.withColumn(
    "words_without_nonword_chars",
    quinn.remove_non_word_characters(col("words"))
)

Removes all non-word characters from a string (e.g. changes "si%$#@!#$!@#mpsons" to "simpsons".

exists()

source_df.withColumn(
    "any_num_greater_than_5",
    quinn.exists(lambda n: n > 5)(col("nums"))
)

nums contains lists of numbers and exists() returns True if any of the numbers in the list are greater than 5. It's similar to the Python any function.

forall()

source_df.withColumn(
    "all_nums_greater_than_3",
    quinn.forall(lambda n: n > 3)(col("nums"))
)

nums contains lists of numbers and forall() returns True if all of the numbers in the list are greater than 3. It's similar to the Python all function.

multi_equals()

source_df.withColumn(
    "are_s1_and_s2_cat",
    quinn.multi_equals("cat")(col("s1"), col("s2"))
)

multi_equals returns true if s1 and s2 are both equal to "cat".

Transformations

snake_case_col_names()

quinn.snake_case_col_names(source_df)

Converts all the column names in a DataFrame to snake_case. It's annoying to write SQL queries when columns aren't snake cased.

sort_columns()

quinn.sort_columns(source_df, "asc")

Sorts the DataFrame columns in alphabetical order. Wide DataFrames are easier to navigate when they're sorted alphabetically.

DataFrame Helpers

column_to_list()

quinn.column_to_list(source_df, "name")

Converts a column in a DataFrame to a list of values.

two_columns_to_dictionary()

quinn.two_columns_to_dictionary(source_df, "name", "age")

Converts two columns of a DataFrame into a dictionary. In this example, name is the key and age is the value.

to_list_of_dictionaries()

quinn.to_list_of_dictionaries(source_df)

Converts an entire DataFrame into a list of dictionaries.

Contributing

We are actively looking for feature requests, pull requests, and bug fixes.

Any developer that demonstrates excellence will be invited to be a maintainer of the project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quinn-0.10.0.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

quinn-0.10.0-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file quinn-0.10.0.tar.gz.

File metadata

  • Download URL: quinn-0.10.0.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.9.5 Darwin/20.3.0

File hashes

Hashes for quinn-0.10.0.tar.gz
Algorithm Hash digest
SHA256 59faf86b8c6b8c44216db20f04e23d2162952ab21e3e546b33e2971bf5bab3eb
MD5 006cec36c269b28942f403d6dd949c21
BLAKE2b-256 4e0ed8b9bf53c17d3007590bc3bea3aec3ff45bafe5a25736004ce69e6152845

See more details on using hashes here.

File details

Details for the file quinn-0.10.0-py3-none-any.whl.

File metadata

  • Download URL: quinn-0.10.0-py3-none-any.whl
  • Upload date:
  • Size: 9.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.9.5 Darwin/20.3.0

File hashes

Hashes for quinn-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7fda718323bfe60ca25a9ccc81af16b23938b27d6fe6c1af18731eadde8363dc
MD5 1f4b468d684a28f257d8a97ca4c57444
BLAKE2b-256 2465a80015de7d5710bdc9a702910aa3a07eefd67ca86e86096607f3092f8a3d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page