Skip to main content

Fast and direct raster I/O for Python programmers who use Numpy

Project description

Rasterio reads and writes geospatial raster datasets.

https://travis-ci.org/mapbox/rasterio.png?branch=master

Rasterio employs GDAL under the hood for file I/O and raster formatting. Its functions typically accept and return Numpy ndarrays. Rasterio is designed to make working with geospatial raster data more productive and more fun.

Example

Here’s an example of the basic features rasterio provides. Three bands are read from an image and summed to produce something like a panchromatic band. This new band is then written to a new single band TIFF.

import numpy
import rasterio
import subprocess

# Register format drivers with a context manager

with rasterio.drivers():

    # Read raster bands directly to Numpy arrays.
    #
    with rasterio.open('rasterio/tests/data/RGB.byte.tif') as src:
        b, g, r = map(src.read_band, (1, 2, 3))

    # Combine arrays in place. Expecting that the sum will
    # temporarily exceed the 8-bit integer range, initialize it as
    # 16-bit. Adding other arrays to it in-place converts those
    # arrays "up" and preserves the type of the total array.

    total = numpy.zeros(r.shape, dtype=rasterio.uint16)
    for band in r, g, b:
        total += band
    total /= 3
    assert total.dtype == rasterio.uint16

    # Write the product as a raster band to a new 8-bit file. For
    # keyword arguments, we start with the meta attributes of the
    # source file, but then change the band count to 1, set the
    # dtype to uint8, and specify LZW compression.

    kwargs = src.meta
    kwargs.update(
        dtype=rasterio.uint8,
        count=1,
        compress='lzw')

    with rasterio.open('example-total.tif', 'w', **kwargs) as dst:
        dst.write_band(1, total.astype(rasterio.uint8))

# At the end of the ``with rasterio.drivers()`` block, context
# manager exits and all drivers are de-registered.

# Dump out gdalinfo's report card and open the image.

info = subprocess.check_output(
    ['gdalinfo', '-stats', 'example-total.tif'])
print(info)
subprocess.call(['open', 'example-total.tif'])
http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg

The rasterio.drivers() function and context manager are new in 0.5. The example above shows the way to use it to register and de-register drivers in a deterministic and efficient way. Code written for rasterio 0.4 will continue to work: opened raster datasets may manage the global driver registry if no other manager is present.

Simple access is provided to properties of a geospatial raster file.

with rasterio.drivers():

    with rasterio.open('rasterio/tests/data/RGB.byte.tif') as src:
        print(src.width, src.height)
        print(src.crs)
        print(src.affine)
        print(src.count)
        print(src.indexes)

# Output:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# Affine(300.0379266750948, 0.0, 101985.0,
#        0.0, -300.041782729805, 2826915.0)
# 3
# [1, 2, 3]

Rasterio also affords conversion of GeoTIFFs, on copy, to other formats.

with rasterio.drivers():

    rasterio.copy(
        'example-total.tif',
        'example-total.jpg',
        driver='JPEG')

subprocess.call(['open', 'example-total.jpg'])

rio_insp

The rio_insp program opens the hood of any raster dataset so you can poke around using Python.

$ rio_insp rasterio/tests/data/RGB.byte.tif
Rasterio 0.8 Interactive Inspector (Python 3.3.5)
Type "src.meta", "src.read_band(1)", or "help(src)" for more information.
>>> src.name
'rasterio/tests/data/RGB.byte.tif'
>>> src.shape
(718, 791)
>>> import pprint
>>> pprint.pprint(src.crs)
{u'ellps': u'WGS84',
u'no_defs': True,
u'proj': u'utm',
u'units': u'm',
u'zone': 18}
>>> b = src.read_band(1)
>>> b
array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=uint8)
>>> b.min(), b.max(), b.mean()
(0, 255, 29.94772668847656)

Dependencies

C library dependecies:

  • GDAL

Python package dependencies (see also requirements.txt):

  • affine

  • Numpy

  • setuptools

Development also requires (see requirements-dev.txt)

  • Cython

  • pytest

Installation

Rasterio is a C extension and to install on Linux or OS X you’ll need a working compiler (XCode on OS X etc). Unofficial Windows binary packages created by Christoph Gohlke are available here.

To install from the source distribution on PyPI, do the following:

$ pip install -r https://raw.github.com/mapbox/rasterio/master/requirements.txt
$ pip install rasterio

To install from a forked repo, do this (in a virtualenv, preferably):

$ pip install -r requirements-dev.txt
$ pip install -e .

The Numpy headers are required to run the rasterio setup script. Numpy has to be installed (via the indicated requirements file) before rasterio can be installed. See rasterio’s Travis configuration for more guidance.

Testing

From the repo directory, run py.test

$ py.test

Documentation

See https://github.com/mapbox/rasterio/tree/master/docs.

License

See LICENSE.txt

Authors

See AUTHORS.txt

Changes

See CHANGES.txt

Project details


Release history Release notifications | RSS feed

This version

0.10

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasterio-0.10.tar.gz (693.5 kB view details)

Uploaded Source

Built Distributions

rasterio-0.10-cp34-cp34m-macosx_10_9_x86_64.whl (482.4 kB view details)

Uploaded CPython 3.4m macOS 10.9+ x86-64

rasterio-0.10-cp27-none-macosx_10_9_x86_64.whl (505.6 kB view details)

Uploaded CPython 2.7 macOS 10.9+ x86-64

File details

Details for the file rasterio-0.10.tar.gz.

File metadata

  • Download URL: rasterio-0.10.tar.gz
  • Upload date:
  • Size: 693.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for rasterio-0.10.tar.gz
Algorithm Hash digest
SHA256 18fe2438d44ceba8703328dbf1f6a71c4573ef2cb7e600d20d2cefd034be7dc5
MD5 6672c6584158d8a84cdd8e2b21385898
BLAKE2b-256 fce7f23d03ad7e17a68cbc084c4bc6ef90b122168eef3fff54d04ab6d1bc7e41

See more details on using hashes here.

File details

Details for the file rasterio-0.10-cp34-cp34m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-0.10-cp34-cp34m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7fb790a6e0357df8b1dad972e15a02ea57f3ad82700c6e9b56cc3af807468cea
MD5 dcc362aea449044e48615da6e0635bfb
BLAKE2b-256 249b10063295ed98269cd0bddee00865c4fcc7fae8990c38f0911f30edff18b8

See more details on using hashes here.

File details

Details for the file rasterio-0.10-cp27-none-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-0.10-cp27-none-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 693e0aacf88ad6c2737870b568bfda4ec65516e16867d35ff003c2a2f496aadd
MD5 34de52579557f46d626118b5ca8ece01
BLAKE2b-256 2b46e9426a9c598d7d3070937ac7121bc5bafcbc5ab84e59fdd805a988a800eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page