Skip to main content

Fast and direct raster I/O for use with Numpy and SciPy

Project description

Rasterio reads and writes geospatial raster datasets.

https://travis-ci.org/mapbox/rasterio.png?branch=master https://coveralls.io/repos/mapbox/rasterio/badge.png

Rasterio employs GDAL under the hood for file I/O and raster formatting. Its functions typically accept and return Numpy ndarrays. Rasterio is designed to make working with geospatial raster data more productive and more fun.

Rasterio is pronounced raw-STEER-ee-oh.

Example

Here’s a simple example of the basic features rasterio provides. Three bands are read from an image and summed to produce something like a panchromatic band. This new band is then written to a new single band TIFF.

import numpy
import rasterio
import subprocess

# Register GDAL format drivers and configuration options with a
# context manager.

with rasterio.drivers(CPL_DEBUG=True):

    # Read raster bands directly to Numpy arrays.
    #
    with rasterio.open('tests/data/RGB.byte.tif') as src:
        b, g, r = src.read()

    # Combine arrays in place. Expecting that the sum will
    # temporarily exceed the 8-bit integer range, initialize it as
    # 16-bit. Adding other arrays to it in-place converts those
    # arrays "up" and preserves the type of the total array.

    total = numpy.zeros(r.shape, dtype=rasterio.uint16)
    for band in r, g, b:
        total += band
    total /= 3

    # Write the product as a raster band to a new 8-bit file. For
    # keyword arguments, we start with the meta attributes of the
    # source file, but then change the band count to 1, set the
    # dtype to uint8, and specify LZW compression.

    kwargs = src.meta
    kwargs.update(
        dtype=rasterio.uint8,
        count=1,
        compress='lzw')

    with rasterio.open('example-total.tif', 'w', **kwargs) as dst:
        dst.write_band(1, total.astype(rasterio.uint8))

# At the end of the ``with rasterio.drivers()`` block, context
# manager exits and all drivers are de-registered.

# Dump out gdalinfo's report card and open the image.

info = subprocess.check_output(
    ['gdalinfo', '-stats', 'example-total.tif'])
print(info)
subprocess.call(['open', 'example-total.tif'])
http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg

The rasterio.drivers() function and context manager are new in 0.5. The example above shows the way to use it to register and de-register drivers in a deterministic and efficient way. Code written for rasterio 0.4 will continue to work: opened raster datasets may manage the global driver registry if no other manager is present.

API Overview

Simple access is provided to properties of a geospatial raster file.

with rasterio.drivers():

    with rasterio.open('tests/data/RGB.byte.tif') as src:
        print(src.width, src.height)
        print(src.crs)
        print(src.affine)
        print(src.count)
        print(src.indexes)

# Output:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# Affine(300.0379266750948, 0.0, 101985.0,
#        0.0, -300.041782729805, 2826915.0)
# 3
# [1, 2, 3]

Rasterio also affords conversion of GeoTIFFs to other formats.

with rasterio.drivers():

    rasterio.copy(
        'example-total.tif',
        'example-total.jpg',
        driver='JPEG')

subprocess.call(['open', 'example-total.jpg'])

Rasterio CLI

Rasterio’s command line interface, named “rio”, is documented at cli.rst. Its rio insp command opens the hood of any raster dataset so you can poke around using Python.

$ rio insp tests/data/RGB.byte.tif
Rasterio 0.10 Interactive Inspector (Python 3.4.1)
Type "src.meta", "src.read_band(1)", or "help(src)" for more information.
>>> src.name
'tests/data/RGB.byte.tif'
>>> src.closed
False
>>> src.shape
(718, 791)
>>> src.crs
{'init': 'epsg:32618'}
>>> b, g, r = src.read()
>>> b
masked_array(data =
 [[-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 ...,
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]],
             mask =
 [[ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 ...,
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]],
       fill_value = 0)

>>> b.min(), b.max(), b.mean()
(1, 255, 44.434478650699106)

Installation

Dependencies

Rasterio has one C library dependency: GDAL >=1.9. GDAL itself depends on a number of other libraries provided by most major operating systems and also depends on the non standard GEOS and PROJ4 libraries.

Python package dependencies (see also requirements.txt): affine, cligj (and click), enum34, numpy.

Development also requires (see requirements-dev.txt) Cython and other packages.

Rasterio binaries for OS X

Binary wheels with the GDAL, GEOS, and PROJ4 libraries included are available for OS X versions 10.7+ starting with Rasterio version 0.17. To install, just run pip install rasterio. These binary wheels are preferred by newer versions of pip. If you don’t want these wheels and want to install from a source distribution, run pip install rasterio --no-use-wheel instead.

The included GDAL library is fairly minimal, providing only the format drivers that ship with GDAL and are enabled by default. To get access to more formats, you must build from a source distribution (see below).

Binary wheels for other operating systems will be available in a future release.

Installing from the source distribution

Rasterio is a Python C extension and to build you’ll need a working compiler (XCode on OS X etc). You’ll also need Numpy preinstalled; the Numpy headers are required to run the rasterio setup script. Numpy has to be installed (via the indicated requirements file) before rasterio can be installed. See rasterio’s Travis configuration for more guidance.

Linux

The following commands are adapted from Rasterio’s Travis-CI configuration.

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
$ sudo apt-get install python-numpy libgdal1h gdal-bin libgdal-dev
$ pip install rasterio

Adapt them as necessary for your Linux system.

OS X

For a Homebrew based Python environment, do the following.

$ brew install gdal
$ pip install rasterio

Windows

Windows binary packages created by Christoph Gohlke are available here.

Testing

>From the repo directory, run py.test

$ py.test

Documentation

See https://github.com/mapbox/rasterio/tree/master/docs.

License

See LICENSE.txt

Authors

See AUTHORS.txt

Changes

See CHANGES.txt

Project details


Release history Release notifications | RSS feed

This version

0.18

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasterio-0.18.tar.gz (916.4 kB view details)

Uploaded Source

Built Distributions

rasterio-0.18-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-0.18-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.0 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file rasterio-0.18.tar.gz.

File metadata

  • Download URL: rasterio-0.18.tar.gz
  • Upload date:
  • Size: 916.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for rasterio-0.18.tar.gz
Algorithm Hash digest
SHA256 f9725b6de31d421c8ab992f6aa1ae841676b012a64bea936b3e11be39df527e6
MD5 9e59c3868ac5e064cc564d409022d028
BLAKE2b-256 11478616a07eed055ebf2c168a2c76de74ccc5fbd8d36b7c89d33839c263292b

See more details on using hashes here.

File details

Details for the file rasterio-0.18-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-0.18-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 87748fbdf132e3c68de8b0389f264ec0546d6e6b420d4531126d87f40e8ab1d7
MD5 ca83b98d023c9acf376ebf757c5ad85a
BLAKE2b-256 0d585c2ee7032e92dceb3c87f48b26a35f06543dc5759503bd990900fcdba312

See more details on using hashes here.

File details

Details for the file rasterio-0.18-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-0.18-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 755de76742c0c5af733d1695da09888b32ac50ec466cd270ab7b3ff641f01f36
MD5 56f21053606e4892757c8d242792a194
BLAKE2b-256 e2826e28b00c1949fcb7a1f03437e5b24833e6ca65511c5700656256496b4ee1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page