Skip to main content

Fast and direct raster I/O for use with Numpy and SciPy

Project description

Rasterio reads and writes geospatial raster datasets.

https://travis-ci.org/mapbox/rasterio.png?branch=master https://coveralls.io/repos/mapbox/rasterio/badge.png

Rasterio employs GDAL under the hood for file I/O and raster formatting. Its functions typically accept and return Numpy ndarrays. Rasterio is designed to make working with geospatial raster data more productive and more fun.

Rasterio is pronounced raw-STEER-ee-oh.

Example

Here’s a simple example of the basic features rasterio provides. Three bands are read from an image and summed to produce something like a panchromatic band. This new band is then written to a new single band TIFF.

import numpy
import rasterio
import subprocess

# Register GDAL format drivers and configuration options with a
# context manager.

with rasterio.drivers(CPL_DEBUG=True):

    # Read raster bands directly to Numpy arrays.
    #
    with rasterio.open('tests/data/RGB.byte.tif') as src:
        b, g, r = src.read()

    # Combine arrays in place. Expecting that the sum will
    # temporarily exceed the 8-bit integer range, initialize it as
    # 16-bit. Adding other arrays to it in-place converts those
    # arrays "up" and preserves the type of the total array.

    total = numpy.zeros(r.shape, dtype=rasterio.uint16)
    for band in r, g, b:
        total += band
    total /= 3

    # Write the product as a raster band to a new 8-bit file. For
    # keyword arguments, we start with the meta attributes of the
    # source file, but then change the band count to 1, set the
    # dtype to uint8, and specify LZW compression.

    kwargs = src.meta
    kwargs.update(
        dtype=rasterio.uint8,
        count=1,
        compress='lzw')

    with rasterio.open('example-total.tif', 'w', **kwargs) as dst:
        dst.write_band(1, total.astype(rasterio.uint8))

# At the end of the ``with rasterio.drivers()`` block, context
# manager exits and all drivers are de-registered.

# Dump out gdalinfo's report card and open the image.

info = subprocess.check_output(
    ['gdalinfo', '-stats', 'example-total.tif'])
print(info)
subprocess.call(['open', 'example-total.tif'])
http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg

The rasterio.drivers() function and context manager are new in 0.5. The example above shows the way to use it to register and de-register drivers in a deterministic and efficient way. Code written for rasterio 0.4 will continue to work: opened raster datasets may manage the global driver registry if no other manager is present.

API Overview

Simple access is provided to properties of a geospatial raster file.

with rasterio.drivers():

    with rasterio.open('tests/data/RGB.byte.tif') as src:
        print(src.width, src.height)
        print(src.crs)
        print(src.affine)
        print(src.count)
        print(src.indexes)

# Output:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# Affine(300.0379266750948, 0.0, 101985.0,
#        0.0, -300.041782729805, 2826915.0)
# 3
# [1, 2, 3]

Rasterio also affords conversion of GeoTIFFs to other formats.

with rasterio.drivers():

    rasterio.copy(
        'example-total.tif',
        'example-total.jpg',
        driver='JPEG')

subprocess.call(['open', 'example-total.jpg'])

Rasterio CLI

Rasterio’s command line interface, named “rio”, is documented at cli.rst. Its rio insp command opens the hood of any raster dataset so you can poke around using Python.

$ rio insp tests/data/RGB.byte.tif
Rasterio 0.10 Interactive Inspector (Python 3.4.1)
Type "src.meta", "src.read_band(1)", or "help(src)" for more information.
>>> src.name
'tests/data/RGB.byte.tif'
>>> src.closed
False
>>> src.shape
(718, 791)
>>> src.crs
{'init': 'epsg:32618'}
>>> b, g, r = src.read()
>>> b
masked_array(data =
 [[-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 ...,
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]],
             mask =
 [[ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 ...,
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]],
       fill_value = 0)

>>> b.min(), b.max(), b.mean()
(1, 255, 44.434478650699106)

Installation

Dependencies

Rasterio has one C library dependency: GDAL >=1.9. GDAL itself depends on a number of other libraries provided by most major operating systems and also depends on the non standard GEOS and PROJ4 libraries.

Python package dependencies (see also requirements.txt): affine, cligj (and click), enum34, numpy.

Development also requires (see requirements-dev.txt) Cython and other packages.

Rasterio binaries for OS X

Binary wheels with the GDAL, GEOS, and PROJ4 libraries included are available for OS X versions 10.7+ starting with Rasterio version 0.17. To install, just run pip install rasterio. These binary wheels are preferred by newer versions of pip. If you don’t want these wheels and want to install from a source distribution, run pip install rasterio --no-use-wheel instead.

The included GDAL library is fairly minimal, providing only the format drivers that ship with GDAL and are enabled by default. To get access to more formats, you must build from a source distribution (see below).

Binary wheels for other operating systems will be available in a future release.

Installing from the source distribution

Rasterio is a Python C extension and to build you’ll need a working compiler (XCode on OS X etc). You’ll also need Numpy preinstalled; the Numpy headers are required to run the rasterio setup script. Numpy has to be installed (via the indicated requirements file) before rasterio can be installed. See rasterio’s Travis configuration for more guidance.

Linux

The following commands are adapted from Rasterio’s Travis-CI configuration.

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
$ sudo apt-get install python-numpy libgdal1h gdal-bin libgdal-dev
$ pip install rasterio

Adapt them as necessary for your Linux system.

OS X

For a Homebrew based Python environment, do the following.

$ brew install gdal
$ pip install rasterio

Windows

Windows binary packages created by Christoph Gohlke are available here.

Testing

>From the repo directory, run py.test

$ py.test

Documentation

See https://github.com/mapbox/rasterio/tree/master/docs.

License

See LICENSE.txt

Authors

See AUTHORS.txt

Changes

See CHANGES.txt

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasterio-0.22.0.tar.gz (955.5 kB view details)

Uploaded Source

Built Distributions

rasterio-0.22.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-0.22.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.0 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file rasterio-0.22.0.tar.gz.

File metadata

  • Download URL: rasterio-0.22.0.tar.gz
  • Upload date:
  • Size: 955.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for rasterio-0.22.0.tar.gz
Algorithm Hash digest
SHA256 edbf9360e7dc7ee1b3aae1f6f1b5f794b7760ae0a6535898dcba5806afb6b4cd
MD5 a67e9af49e5c15089c285d617c7351c4
BLAKE2b-256 5de4fc370c8f48f7ed485b72c17fd12ed63ded656ecdb2cc4ec98f9b4e9cc4cf

See more details on using hashes here.

File details

Details for the file rasterio-0.22.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-0.22.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0fee3128deb43aae5b50b5a3bf3def7e7e6ea1ba9739c13814d0c5a8aa770a8c
MD5 abc2a3ac73da2cadcf3aff0d4ccb6097
BLAKE2b-256 3a65799155b27385b1b5aec2a570e345efe5a3077650d52c07cd5bf73d56c2e1

See more details on using hashes here.

File details

Details for the file rasterio-0.22.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-0.22.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 6ef090668b8ad72263008be93379e678ad4b10ac56792d857da3d9eff4b9cb6a
MD5 2cefb06411f284c07fe50078f80d286a
BLAKE2b-256 339cac2eade62d7434dd2e3555758193e3ceb568a6ad69db9c7e36470baf64da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page