Skip to main content

Fast and direct raster I/O for use with Numpy and SciPy

Project description

Rasterio reads and writes geospatial raster datasets.

https://travis-ci.org/mapbox/rasterio.png?branch=master https://coveralls.io/repos/mapbox/rasterio/badge.png

Rasterio employs GDAL under the hood for file I/O and raster formatting. Its functions typically accept and return Numpy ndarrays. Rasterio is designed to make working with geospatial raster data more productive and more fun.

Rasterio is pronounced raw-STEER-ee-oh.

Example

Here’s a simple example of the basic features rasterio provides. Three bands are read from an image and summed to produce something like a panchromatic band. This new band is then written to a new single band TIFF.

import numpy
import rasterio
import subprocess

# Register GDAL format drivers and configuration options with a
# context manager.

with rasterio.drivers(CPL_DEBUG=True):

    # Read raster bands directly to Numpy arrays.
    #
    with rasterio.open('tests/data/RGB.byte.tif') as src:
        b, g, r = src.read()

    # Combine arrays in place. Expecting that the sum will
    # temporarily exceed the 8-bit integer range, initialize it as
    # 16-bit. Adding other arrays to it in-place converts those
    # arrays "up" and preserves the type of the total array.

    total = numpy.zeros(r.shape, dtype=rasterio.uint16)
    for band in r, g, b:
        total += band
    total /= 3

    # Write the product as a raster band to a new 8-bit file. For
    # keyword arguments, we start with the meta attributes of the
    # source file, but then change the band count to 1, set the
    # dtype to uint8, and specify LZW compression.

    kwargs = src.meta
    kwargs.update(
        dtype=rasterio.uint8,
        count=1,
        compress='lzw')

    with rasterio.open('example-total.tif', 'w', **kwargs) as dst:
        dst.write_band(1, total.astype(rasterio.uint8))

# At the end of the ``with rasterio.drivers()`` block, context
# manager exits and all drivers are de-registered.

# Dump out gdalinfo's report card and open the image.

info = subprocess.check_output(
    ['gdalinfo', '-stats', 'example-total.tif'])
print(info)
subprocess.call(['open', 'example-total.tif'])
http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg

The rasterio.drivers() function and context manager are new in 0.5. The example above shows the way to use it to register and de-register drivers in a deterministic and efficient way. Code written for rasterio 0.4 will continue to work: opened raster datasets may manage the global driver registry if no other manager is present.

API Overview

Simple access is provided to properties of a geospatial raster file.

with rasterio.drivers():

    with rasterio.open('tests/data/RGB.byte.tif') as src:
        print(src.width, src.height)
        print(src.crs)
        print(src.affine)
        print(src.count)
        print(src.indexes)

# Output:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# Affine(300.0379266750948, 0.0, 101985.0,
#        0.0, -300.041782729805, 2826915.0)
# 3
# [1, 2, 3]

Rasterio also affords conversion of GeoTIFFs to other formats.

with rasterio.drivers():

    rasterio.copy(
        'example-total.tif',
        'example-total.jpg',
        driver='JPEG')

subprocess.call(['open', 'example-total.jpg'])

Rasterio CLI

Rasterio’s command line interface, named “rio”, is documented at cli.rst. Its rio insp command opens the hood of any raster dataset so you can poke around using Python.

$ rio insp tests/data/RGB.byte.tif
Rasterio 0.10 Interactive Inspector (Python 3.4.1)
Type "src.meta", "src.read_band(1)", or "help(src)" for more information.
>>> src.name
'tests/data/RGB.byte.tif'
>>> src.closed
False
>>> src.shape
(718, 791)
>>> src.crs
{'init': 'epsg:32618'}
>>> b, g, r = src.read()
>>> b
masked_array(data =
 [[-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 ...,
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]],
             mask =
 [[ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 ...,
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]],
       fill_value = 0)

>>> b.min(), b.max(), b.mean()
(1, 255, 44.434478650699106)

Installation

Dependencies

Rasterio has one C library dependency: GDAL >=1.9. GDAL itself depends on a number of other libraries provided by most major operating systems and also depends on the non standard GEOS and PROJ4 libraries.

Python package dependencies (see also requirements.txt): affine, cligj (and click), enum34, numpy.

Development also requires (see requirements-dev.txt) Cython and other packages.

Rasterio binaries for OS X

Binary wheels with the GDAL, GEOS, and PROJ4 libraries included are available for OS X versions 10.7+ starting with Rasterio version 0.17. To install, just run pip install rasterio. These binary wheels are preferred by newer versions of pip. If you don’t want these wheels and want to install from a source distribution, run pip install rasterio --no-use-wheel instead.

The included GDAL library is fairly minimal, providing only the format drivers that ship with GDAL and are enabled by default. To get access to more formats, you must build from a source distribution (see below).

Binary wheels for other operating systems will be available in a future release.

Installing from the source distribution

Rasterio is a Python C extension and to build you’ll need a working compiler (XCode on OS X etc). You’ll also need Numpy preinstalled; the Numpy headers are required to run the rasterio setup script. Numpy has to be installed (via the indicated requirements file) before rasterio can be installed. See rasterio’s Travis configuration for more guidance.

Linux

The following commands are adapted from Rasterio’s Travis-CI configuration.

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
$ sudo apt-get install python-numpy libgdal1h gdal-bin libgdal-dev
$ pip install rasterio

Adapt them as necessary for your Linux system.

OS X

For a Homebrew based Python environment, do the following.

$ brew install gdal
$ pip install rasterio

Windows

Windows binary packages created by Christoph Gohlke are available here.

Testing

>From the repo directory, run py.test

$ py.test

Documentation

See https://github.com/mapbox/rasterio/tree/master/docs.

License

See LICENSE.txt

Authors

See AUTHORS.txt

Changes

See CHANGES.txt

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasterio-0.23.0.tar.gz (961.8 kB view details)

Uploaded Source

Built Distributions

rasterio-0.23.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-0.23.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.0 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file rasterio-0.23.0.tar.gz.

File metadata

  • Download URL: rasterio-0.23.0.tar.gz
  • Upload date:
  • Size: 961.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for rasterio-0.23.0.tar.gz
Algorithm Hash digest
SHA256 88c2c71235738a116393796cef893d43f48a2ef74fa610c7ca663cd586ae795e
MD5 efe0a3eae165775bc1aef2749f4f5abd
BLAKE2b-256 c6aa6ef1490618af376973799fc5ecd74cf6e1275cb1a6c862a3665222b6d258

See more details on using hashes here.

File details

Details for the file rasterio-0.23.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-0.23.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c7edfeaaabea24fcfd69a5ab520dc6708fa27e648f3d32763ab1a85e1bf56f7d
MD5 9a6472373a16582b9243c2c0bf266187
BLAKE2b-256 f16682a15035858ff132eda318693bb36111ed52dd1794db5f673aef1adbdd56

See more details on using hashes here.

File details

Details for the file rasterio-0.23.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-0.23.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a14dc2166cb95ea3033e7ce7fe856166b1edba855848998512bee93eafa73e89
MD5 155d827a2f811c4b160a42b303e1c349
BLAKE2b-256 6b5dee28d0ad230dfdc5402e498cc013696e5434c747dac5963b8c747af70321

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page