Skip to main content

Fast and direct raster I/O for Python programmers who use Numpy

Project description

Rasterio is GDAL and Numpy-based Python library for geospatial raster data access.

https://travis-ci.org/mapbox/rasterio.png?branch=master

Rasterio employs GDAL under the hood for file I/O and raster formatting. Its functions typically accept and return Numpy ndarrays. Rasterio is designed to make working with geospatial raster data more productive and more fun.

Example

Here’s an example of the basic features rasterio provides. Three bands are read from an image and summed to produce something like a panchromatic band. This new band is then written to a new single band TIFF.

import numpy
import rasterio
import subprocess

# Register format drivers with a context manager

with rasterio.drivers():

    # Read raster bands directly to Numpy arrays.
    #
    with rasterio.open('rasterio/tests/data/RGB.byte.tif') as src:
        b, g, r = map(src.read_band, (1, 2, 3))

    # Combine arrays using the 'iadd' ufunc. Expecting that the sum
    # will exceed the 8-bit integer range, initialize it as 16-bit.
    # Adding other arrays to it in-place converts those arrays up
    # and preserves the type of the total array.

    total = numpy.zeros(r.shape, dtype=rasterio.uint16)
    for band in (r, g, b):
        total += band
    total /= 3
    assert total.dtype == rasterio.uint16

    # Write the product as a raster band to a new 8-bit file. For
    # keyword arguments, we start with the meta attributes of the
    # source file, but then change the band count to 1, set the
    # dtype to uint8, and specify LZW compression.

    kwargs = src.meta
    kwargs.update(
        dtype=rasterio.uint8,
        count=1,
        compress='lzw')

    with rasterio.open('example-total.tif', 'w', **kwargs) as dst:
        dst.write_band(1, total.astype(rasterio.uint8))

# At the end of the ``with rasterio.drivers()`` block, context
# manager exits and all drivers are de-registered.

# Dump out gdalinfo's report card and open the image.

info = subprocess.check_output(
    ['gdalinfo', '-stats', 'example-total.tif'])
print(info)
subprocess.call(['open', 'example-total.tif'])
http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg

The rasterio.drivers() function and context manager are new in 0.5. The example above shows the way to use it to register and de-register drivers in a deterministic and efficient way. Code written for rasterio 0.4 will continue to work: opened raster datasets may manage the global driver registry if no other manager is present.

Simple access is provided to properties of a geospatial raster file.

with rasterio.drivers():

    with rasterio.open('rasterio/tests/data/RGB.byte.tif') as src:
        print(src.width, src.height)
        print(src.crs)
        print(src.transform)
        print(src.count)
        print(src.indexes)

# Output:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# [101985.0, 300.0379266750948, 0.0, 2826915.0, 0.0, -300.041782729805]
# 3
# [1, 2, 3]

Rasterio also affords conversion of GeoTIFFs, on copy, to other formats.

with rasterio.drivers():

    rasterio.copy(
        'example-total.tif',
        'example-total.jpg',
        driver='JPEG')

subprocess.call(['open', 'example-total.jpg'])

Rasterio.insp

Like a gdalinfo on steroids, pass a filename to “rasterio.insp”.

$ rasterio.insp rasterio/tests/data/RGB.byte.tif
Rasterio 0.5.1 Interactive Inspector (Python 2.7.5)
Type "src.name", "src.read_band(1)", or "help(src)" for more information.
'rasterio/tests/data/shade.tif'
>>> src.shape
(1024, 1024)
>>> import pprint
>>> pprint.pprint(src.crs)
{u'a': 6378137,
 u'b': 6378137,
 u'k': 1,
 u'lat_ts': 0,
 u'lon_0': 0,
 u'nadgrids': u'@null',
 u'no_defs': True,
 u'proj': u'merc',
 u'units': u'm',
 u'wktext': True,
 u'x_0': 0,
 u'y_0': 0}
>>> b = src.read_band(1)
>>> b
array([[255, 255, 255, ...,   0,   0,   0],
       [255, 255, 255, ...,   0,   0,   0],
       [255, 255, 255, ...,   0,   0,   0],
       ...,
       [255, 255, 255, ..., 255, 255, 255],
       [255, 255, 255, ..., 255, 255, 255],
       [255, 255, 255, ..., 255, 255, 255]], dtype=uint8)
>>> b.min(), b.max(), b.mean()
(0, 255, 224.75362300872803)

Dependencies

C library dependecies:

  • GDAL

Python package dependencies (see also requirements.txt):

  • Numpy

  • setuptools

Development also requires (see requirements-dev.txt)

  • Cython

  • nose

Installation

Rasterio is a C extension and there are not yet any binary releases. You’ll need a working compiler (XCode on OS X, etc). To install from the source distribution on PyPI, do the following:

$ pip install -r https://raw.github.com/mapbox/rasterio/master/requirements.txt
$ pip install rasterio>=0.5

To install from a forked repo, do this (in a virtualenv, preferably):

$ pip install -r requirements-dev.txt
$ python setup.py install

The Numpy headers are required to run the rasterio setup script. Numpy has to be installed (via the indicated requirements file) before rasterio can be installed. See rasterio’s Travis configuration for more guidance.

Testing

From the repo directory, run nosetests.

$ nosetests

License

See LICENSE.txt

Authors

See AUTHORS.txt

Changes

See CHANGES.txt

Project details


Release history Release notifications | RSS feed

This version

0.5.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasterio-0.5.1.tar.gz (256.8 kB view details)

Uploaded Source

File details

Details for the file rasterio-0.5.1.tar.gz.

File metadata

  • Download URL: rasterio-0.5.1.tar.gz
  • Upload date:
  • Size: 256.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for rasterio-0.5.1.tar.gz
Algorithm Hash digest
SHA256 b8b3d7fe510a9c149a4efc6efb8bead0f83c50a7fb89ad5a74f0f78d2e4b9adf
MD5 19394bfe64aabff0bdca03826a72bddb
BLAKE2b-256 98e9b94bf45ec04e896891130a72a1dddeb210144fa07a579d6ca0113abb16ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page