Skip to main content

Fast and direct raster I/O for use with Numpy and SciPy

Project description

Rasterio reads and writes geospatial raster data.

https://travis-ci.org/mapbox/rasterio.png?branch=master https://coveralls.io/repos/github/mapbox/rasterio/badge.svg?branch=master

Geographic information systems use GeoTIFF and other formats to organize and store gridded, or raster, datasets. Rasterio reads and writes these formats and provides a Python API based on N-D arrays.

Rasterio supports Python 2.7 and 3.3-3.6 on Linux and Mac OS X.

Read the documentation for more details: https://rasterio.readthedocs.io/en/latest/.

Example

Here’s an example of some basic features that Rasterio provides. Three bands are read from an image and averaged to produce something like a panchromatic band. This new band is then written to a new single band TIFF.

import numpy as np
import rasterio

# Read raster bands directly to Numpy arrays.
#
with rasterio.open('tests/data/RGB.byte.tif') as src:
    r, g, b = src.read()

# Combine arrays in place. Expecting that the sum will
# temporarily exceed the 8-bit integer range, initialize it as
# a 64-bit float (the numpy default) array. Adding other
# arrays to it in-place converts those arrays "up" and
# preserves the type of the total array.
total = np.zeros(r.shape)
for band in r, g, b:
    total += band
total /= 3

# Write the product as a raster band to a new 8-bit file. For
# the new file's profile, we start with the meta attributes of
# the source file, but then change the band count to 1, set the
# dtype to uint8, and specify LZW compression.
profile = src.profile
profile.update(dtype=rasterio.uint8, count=1, compress='lzw')

with rasterio.open('example-total.tif', 'w', **profile) as dst:
    dst.write(total.astype(rasterio.uint8), 1)

The output:

http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg

API Overview

Rasterio gives access to properties of a geospatial raster file.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    print(src.width, src.height)
    print(src.crs)
    print(src.transform)
    print(src.count)
    print(src.indexes)

# Printed:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# Affine(300.0379266750948, 0.0, 101985.0,
#        0.0, -300.041782729805, 2826915.0)
# 3
# [1, 2, 3]

A rasterio dataset also provides methods for getting extended array slices given georeferenced coordinates.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    print src.window(**src.window_bounds(((100, 200), (100, 200))))

# Printed:
# ((100, 200), (100, 200))

Rasterio CLI

Rasterio’s command line interface, named “rio”, is documented at cli.rst. Its rio insp command opens the hood of any raster dataset so you can poke around using Python.

$ rio insp tests/data/RGB.byte.tif
Rasterio 0.10 Interactive Inspector (Python 3.4.1)
Type "src.meta", "src.read(1)", or "help(src)" for more information.
>>> src.name
'tests/data/RGB.byte.tif'
>>> src.closed
False
>>> src.shape
(718, 791)
>>> src.crs
{'init': 'epsg:32618'}
>>> b, g, r = src.read()
>>> b
masked_array(data =
 [[-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 ...,
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]],
             mask =
 [[ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 ...,
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]],
       fill_value = 0)

>>> np.nanmin(b), np.nanmax(b), np.nanmean(b)
(0, 255, 29.94772668847656)

Rio Plugins

Rio provides the ability to create subcommands using plugins. See cli.rst for more information on building plugins.

See the plugin registry for a list of available plugins.

Installation

Please install Rasterio in a virtual environment so that its requirements don’t tamper with your system’s Python.

SSL certs

The Linux wheels on PyPI are built on CentOS and libcurl expects certs to be in /etc/pki/tls/certs/ca-bundle.crt. Ubuntu’s certs, for example, are in a different location. You may need to use the CURL_CA_BUNDLE environment variable to specify the location of SSL certs on your computer. On an Ubuntu system set the variable as shown below.

$ export CURL_CA_BUNDLE=/etc/ssl/certs/ca-certificates.crt

Dependencies

Rasterio has a C library dependency: GDAL >=1.11. GDAL itself depends on some other libraries provided by most major operating systems and also depends on the non standard GEOS and PROJ4 libraries. How to meet these requirement will be explained below.

Rasterio’s Python dependencies are listed in its requirements.txt file.

Development also requires (see requirements-dev.txt) Cython and other packages.

Binary Distributions

Use a binary distributions that directly or indirectly provide GDAL if possible.

Linux

Rasterio distributions are available from UbuntuGIS and Anaconda’s conda-forge channel.

Manylinux1 wheels are available on PyPI.```

OS X

Binary distributions with GDAL, GEOS, and PROJ4 libraries included are available for OS X versions 10.7+ starting with Rasterio version 0.17. To install, run pip install rasterio. These binary wheels are preferred by newer versions of pip.

If you don’t want these wheels and want to install from a source distribution, run pip install rasterio --no-binary rasterio instead.

The included GDAL library is fairly minimal, providing only the format drivers that ship with GDAL and are enabled by default. To get access to more formats, you must build from a source distribution (see below).

Windows

Binary wheels for rasterio and GDAL are created by Christoph Gohlke and are available from his website.

To install rasterio, simply download both binaries for your system (rasterio and GDAL) and run something like this from the downloads folder:

$ pip install -U pip
$ pip install GDAL-2.0.2-cp27-none-win32.whl
$ pip install rasterio-0.34.0-cp27-cp27m-win32.whl

You can also install rasterio with conda using Anaconda’s conda-forge channel.

$ conda install -c conda-forge rasterio

Source Distributions

Rasterio is a Python C extension and to build you’ll need a working compiler (XCode on OS X etc). You’ll also need Numpy preinstalled; the Numpy headers are required to run the rasterio setup script. Numpy has to be installed (via the indicated requirements file) before rasterio can be installed. See rasterio’s Travis configuration for more guidance.

Linux

The following commands are adapted from Rasterio’s Travis-CI configuration.

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
$ sudo apt-get install gdal-bin libgdal-dev
$ pip install -U pip
$ pip install rasterio

Adapt them as necessary for your Linux system.

OS X

For a Homebrew based Python environment, do the following.

$ brew update
$ brew install gdal
$ pip install -U pip
$ pip install --no-use-wheel rasterio

Alternatively, you can install GDAL binaries from kyngchaos. You will then need to add the installed location /Library/Frameworks/GDAL.framework/Programs to your system path.

Windows

You can download a binary distribution of GDAL from here. You will also need to download the compiled libraries and headers (include files).

When building from source on Windows, it is important to know that setup.py cannot rely on gdal-config, which is only present on UNIX systems, to discover the locations of header files and libraries that rasterio needs to compile its C extensions. On Windows, these paths need to be provided by the user. You will need to find the include files and the library files for gdal and use setup.py as follows.

$ python setup.py build_ext -I<path to gdal include files> -lgdal_i -L<path to gdal library>
$ python setup.py install

We have had success compiling code using the same version of Microsoft’s Visual Studio used to compile the targeted version of Python (more info on versions used here.).

Note: The GDAL dll (gdal111.dll) and gdal-data directory need to be in your Windows PATH otherwise rasterio will fail to work.

Support

The primary forum for questions about installation and usage of Rasterio is https://rasterio.groups.io/g/main. The authors and other users will answer questions when they have expertise to share and time to explain. Please take the time to craft a clear question and be patient about responses.

Please do not bring these questions to Rasterio’s issue tracker, which we want to reserve for bug reports and other actionable issues.

While Rasterio’s repo is in the Mapbox GitHub organization, Mapbox’s Support team is focused on customer support for its commercial platform and Rasterio support requests may be perfunctorily closed with or without a link to https://rasterio.groups.io/g/main. It’s better to bring questions directly to the main Rasterio group at groups.io.

Development and Testing

See CONTRIBUTING.rst.

Documentation

See docs/.

License

See LICENSE.txt.

Authors

See AUTHORS.txt.

Changes

See CHANGES.txt.

Who is Using Rasterio?

See here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasterio-1.0.21.tar.gz (1.9 MB view details)

Uploaded Source

Built Distributions

rasterio-1.0.21-cp37-cp37m-manylinux1_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.7m

rasterio-1.0.21-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (26.6 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.0.21-cp36-cp36m-manylinux1_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.6m

rasterio-1.0.21-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (26.7 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.0.21-cp35-cp35m-manylinux1_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.5m

rasterio-1.0.21-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (26.5 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.0.21-cp34-cp34m-manylinux1_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.4m

rasterio-1.0.21-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (26.5 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.0.21-cp27-cp27mu-manylinux1_x86_64.whl (19.6 MB view details)

Uploaded CPython 2.7mu

rasterio-1.0.21-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (26.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file rasterio-1.0.21.tar.gz.

File metadata

  • Download URL: rasterio-1.0.21.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.21.tar.gz
Algorithm Hash digest
SHA256 5dbe570d381e6bec0da703a92ebf543ca01d9b34ac6ad5f3791fdf0a7aab27a3
MD5 7244ec9e9bff10dca202efc64e0d0019
BLAKE2b-256 b40fc5a412208f217bba892e5482c1129df29bdfe474a069aba36407ee68c518

See more details on using hashes here.

File details

Details for the file rasterio-1.0.21-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.21-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.21-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e8484d58a37f5bfa4c872215504e5d5028aa07de15627e51f58187f4ac764251
MD5 13e40d439ef150bf1ee12df10655628a
BLAKE2b-256 6b525f231de91164c0eec3ab91f638b9898139b6a87f277cf2c80b45b2e574c9

See more details on using hashes here.

File details

Details for the file rasterio-1.0.21-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.21-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 15809f6e90bd665b79a87b8342af0e17a1ce63f3c48d368c3764c89b331295fc
MD5 7868e4e6d09093ba40bb490b7857bd6a
BLAKE2b-256 b7c2f469d21ac1bd6b4b8f0d56c7aed452f5d7be98b9c06b112731e410079efb

See more details on using hashes here.

File details

Details for the file rasterio-1.0.21-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.21-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.21-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 24097f009ae215a129b95d3cd61aa810edab1384713e5838dd29e1a921c0c259
MD5 4317640768bfa10d015bbd6a58ae2321
BLAKE2b-256 03f35530cb1ed9ea7a4dbb3eb49108528b4d1fcb0f3b41d1a241b24af436403e

See more details on using hashes here.

File details

Details for the file rasterio-1.0.21-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.21-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c659d84beb5d35133a2aa70ba4a05c1b993ed8ccb09acb21b6daa129cd3db193
MD5 1233a8bb11c1e925c97116721981d8e0
BLAKE2b-256 3627edc49c713a10b7ec8c2ca7b2c5ff7a75ddbd7dd1f3cee217c4cef5d7fff1

See more details on using hashes here.

File details

Details for the file rasterio-1.0.21-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.21-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.21-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9e74ea87ab7c35aeee3162a30c1d94a3a3c76071c94a6589f11675a4ae62c003
MD5 20604c56fb3998bb6cd296829fb5debb
BLAKE2b-256 a4bd80bf285b21c70a3c9cbcf27a2e73ed53534e294cf53fd1b87d33be929b9d

See more details on using hashes here.

File details

Details for the file rasterio-1.0.21-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.21-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0a110900f1c450a028e6cfe532351e6f12dc4df3efaf0cefe71527421e151d57
MD5 291181f79a0015db83f199a2e4fe7bd9
BLAKE2b-256 542574f8882636fe73fceddb0e199afc2cd98693c3828d65fa5ac66d89fc5836

See more details on using hashes here.

File details

Details for the file rasterio-1.0.21-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.21-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.6 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.21-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a916e5668faa32c293cd5903e2f060d3bd7b4019f4ff03569a5984164f92b991
MD5 994d2d8e9cfae21d7d1e07e8c7dda37e
BLAKE2b-256 d3fa6fa95cd5afe776f02de8b0cde56f769fe498f6b33f797b3533cb4ec0e4d4

See more details on using hashes here.

File details

Details for the file rasterio-1.0.21-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.21-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 12850347f41b6690a2ae789b693b5dc2ed280e7fa8643888eaa1a09a17501676
MD5 16af6b9bb129953e1ddd1c380cb52eb5
BLAKE2b-256 1f82cba3bc9026ab8a9079fbdeb71ea38d94cddc059c463892a8ee2caa856d42

See more details on using hashes here.

File details

Details for the file rasterio-1.0.21-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.21-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.6 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.21-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e5761e00335cbc233dc4fa75f8859bc9a133bd62781d4cd742fefe4809edeed0
MD5 74a717b8ae81faad7ed4f53d1bdc66d0
BLAKE2b-256 2bba9fe5349942d49aab4d96c9daaffefb2743f33f6ae2f7221cefaf96f71407

See more details on using hashes here.

File details

Details for the file rasterio-1.0.21-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.21-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2518a2186fe191531086beb725dba534ce9d493d351241d395f124012a07a4eb
MD5 c0a8b0f832628d0fb9dae632223dfc5d
BLAKE2b-256 0b8811a9f60ad7682640d06e2d9ee1732857d79bb94529dad5cc98c3946d7e83

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page