Skip to main content

Fast and direct raster I/O for use with Numpy and SciPy

Project description

Rasterio reads and writes geospatial raster data.

https://travis-ci.org/mapbox/rasterio.png?branch=master https://coveralls.io/repos/github/mapbox/rasterio/badge.svg?branch=master

Geographic information systems use GeoTIFF and other formats to organize and store gridded, or raster, datasets. Rasterio reads and writes these formats and provides a Python API based on N-D arrays.

Rasterio supports Python 2.7 and 3.3-3.6 on Linux and Mac OS X.

Read the documentation for more details: https://rasterio.readthedocs.io/.

Example

Here’s an example of some basic features that Rasterio provides. Three bands are read from an image and averaged to produce something like a panchromatic band. This new band is then written to a new single band TIFF.

import numpy as np
import rasterio

# Read raster bands directly to Numpy arrays.
#
with rasterio.open('tests/data/RGB.byte.tif') as src:
    r, g, b = src.read()

# Combine arrays in place. Expecting that the sum will
# temporarily exceed the 8-bit integer range, initialize it as
# a 64-bit float (the numpy default) array. Adding other
# arrays to it in-place converts those arrays "up" and
# preserves the type of the total array.
total = np.zeros(r.shape)
for band in r, g, b:
    total += band
total /= 3

# Write the product as a raster band to a new 8-bit file. For
# the new file's profile, we start with the meta attributes of
# the source file, but then change the band count to 1, set the
# dtype to uint8, and specify LZW compression.
profile = src.profile
profile.update(dtype=rasterio.uint8, count=1, compress='lzw')

with rasterio.open('example-total.tif', 'w', **profile) as dst:
    dst.write(total.astype(rasterio.uint8), 1)

The output:

http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg

API Overview

Rasterio gives access to properties of a geospatial raster file.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    print(src.width, src.height)
    print(src.crs)
    print(src.transform)
    print(src.count)
    print(src.indexes)

# Printed:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# Affine(300.0379266750948, 0.0, 101985.0,
#        0.0, -300.041782729805, 2826915.0)
# 3
# [1, 2, 3]

A rasterio dataset also provides methods for getting extended array slices given georeferenced coordinates.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    print src.window(**src.window_bounds(((100, 200), (100, 200))))

# Printed:
# ((100, 200), (100, 200))

Rasterio CLI

Rasterio’s command line interface, named “rio”, is documented at cli.rst. Its rio insp command opens the hood of any raster dataset so you can poke around using Python.

$ rio insp tests/data/RGB.byte.tif
Rasterio 0.10 Interactive Inspector (Python 3.4.1)
Type "src.meta", "src.read(1)", or "help(src)" for more information.
>>> src.name
'tests/data/RGB.byte.tif'
>>> src.closed
False
>>> src.shape
(718, 791)
>>> src.crs
{'init': 'epsg:32618'}
>>> b, g, r = src.read()
>>> b
masked_array(data =
 [[-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 ...,
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]],
             mask =
 [[ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 ...,
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]],
       fill_value = 0)

>>> np.nanmin(b), np.nanmax(b), np.nanmean(b)
(0, 255, 29.94772668847656)

Rio Plugins

Rio provides the ability to create subcommands using plugins. See cli.rst for more information on building plugins.

See the plugin registry for a list of available plugins.

Installation

Please install Rasterio in a virtual environment so that its requirements don’t tamper with your system’s Python.

SSL certs

The Linux wheels on PyPI are built on CentOS and libcurl expects certs to be in /etc/pki/tls/certs/ca-bundle.crt. Ubuntu’s certs, for example, are in a different location. You may need to use the CURL_CA_BUNDLE environment variable to specify the location of SSL certs on your computer. On an Ubuntu system set the variable as shown below.

$ export CURL_CA_BUNDLE=/etc/ssl/certs/ca-certificates.crt

Dependencies

Rasterio has a C library dependency: GDAL >=1.11. GDAL itself depends on some other libraries provided by most major operating systems and also depends on the non standard GEOS and PROJ4 libraries. How to meet these requirement will be explained below.

Rasterio’s Python dependencies are listed in its requirements.txt file.

Development also requires (see requirements-dev.txt) Cython and other packages.

Binary Distributions

Use a binary distributions that directly or indirectly provide GDAL if possible.

Linux

Rasterio distributions are available from UbuntuGIS and Anaconda’s conda-forge channel.

Manylinux1 wheels are available on PyPI.```

OS X

Binary distributions with GDAL, GEOS, and PROJ4 libraries included are available for OS X versions 10.7+ starting with Rasterio version 0.17. To install, run pip install rasterio. These binary wheels are preferred by newer versions of pip.

If you don’t want these wheels and want to install from a source distribution, run pip install rasterio --no-binary rasterio instead.

The included GDAL library is fairly minimal, providing only the format drivers that ship with GDAL and are enabled by default. To get access to more formats, you must build from a source distribution (see below).

Windows

Binary wheels for rasterio and GDAL are created by Christoph Gohlke and are available from his website.

To install rasterio, simply download both binaries for your system (rasterio and GDAL) and run something like this from the downloads folder:

$ pip install -U pip
$ pip install GDAL-2.0.2-cp27-none-win32.whl
$ pip install rasterio-0.34.0-cp27-cp27m-win32.whl

You can also install rasterio with conda using Anaconda’s conda-forge channel.

$ conda install -c conda-forge rasterio

Source Distributions

Rasterio is a Python C extension and to build you’ll need a working compiler (XCode on OS X etc). You’ll also need Numpy preinstalled; the Numpy headers are required to run the rasterio setup script. Numpy has to be installed (via the indicated requirements file) before rasterio can be installed. See rasterio’s Travis configuration for more guidance.

Linux

The following commands are adapted from Rasterio’s Travis-CI configuration.

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
$ sudo apt-get install gdal-bin libgdal-dev
$ pip install -U pip
$ pip install rasterio

Adapt them as necessary for your Linux system.

OS X

For a Homebrew based Python environment, do the following.

$ brew update
$ brew install gdal
$ pip install -U pip
$ pip install --no-use-wheel rasterio

Alternatively, you can install GDAL binaries from kyngchaos. You will then need to add the installed location /Library/Frameworks/GDAL.framework/Programs to your system path.

Windows

You can download a binary distribution of GDAL from here. You will also need to download the compiled libraries and headers (include files).

When building from source on Windows, it is important to know that setup.py cannot rely on gdal-config, which is only present on UNIX systems, to discover the locations of header files and libraries that rasterio needs to compile its C extensions. On Windows, these paths need to be provided by the user. You will need to find the include files and the library files for gdal and use setup.py as follows.

$ python setup.py build_ext -I<path to gdal include files> -lgdal_i -L<path to gdal library>
$ python setup.py install

We have had success compiling code using the same version of Microsoft’s Visual Studio used to compile the targeted version of Python (more info on versions used here.).

Note: The GDAL dll (gdal111.dll) and gdal-data directory need to be in your Windows PATH otherwise rasterio will fail to work.

Support

The primary forum for questions about installation and usage of Rasterio is https://rasterio.groups.io/g/main. The authors and other users will answer questions when they have expertise to share and time to explain. Please take the time to craft a clear question and be patient about responses.

Please do not bring these questions to Rasterio’s issue tracker, which we want to reserve for bug reports and other actionable issues.

While Rasterio’s repo is in the Mapbox GitHub organization, Mapbox’s Support team is focused on customer support for its commercial platform and Rasterio support requests may be perfunctorily closed with or without a link to https://rasterio.groups.io/g/main. It’s better to bring questions directly to the main Rasterio group at groups.io.

Development and Testing

See CONTRIBUTING.rst.

Documentation

See docs/.

License

See LICENSE.txt.

Authors

See AUTHORS.txt.

Changes

See CHANGES.txt.

Who is Using Rasterio?

See here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasterio-1.0.26.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

rasterio-1.0.26-cp37-cp37m-manylinux1_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.7m

rasterio-1.0.26-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.6 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.0.26-cp36-cp36m-manylinux1_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.6m

rasterio-1.0.26-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.0.26-cp35-cp35m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.5m

rasterio-1.0.26-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.6 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.0.26-cp27-cp27mu-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.7mu

rasterio-1.0.26-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file rasterio-1.0.26.tar.gz.

File metadata

  • Download URL: rasterio-1.0.26.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.26.tar.gz
Algorithm Hash digest
SHA256 9d5246631b2295b9fb417f220d009a1954aeb5895c9e27bab71fc143f4ba5633
MD5 d5c93e6e4d62f2cd37877b70963e739c
BLAKE2b-256 307cc66b72339b17dfb58f2260473b575ed875216c4de8f579883ef3690b8759

See more details on using hashes here.

File details

Details for the file rasterio-1.0.26-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.26-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.26-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 de345b137dbd393e92c9754d7e84057aaf2c6b809bce6ff649d88911ed9becdc
MD5 e35062c31626167a67d65b085a59a9d4
BLAKE2b-256 3cc2aed067257edfbc215689b9dbf73e9ee5480b7e9a54e85dfa0aeb771209ff

See more details on using hashes here.

File details

Details for the file rasterio-1.0.26-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.26-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c03254632618675f1c2c8c1835bb640b3bbde8d81a830fd67f8a032087949943
MD5 be188140c551fa191d6ded814fc7b97b
BLAKE2b-256 a53c08bfe2633150da593086aca832147fb32b53bbd793d08a5471996d19735d

See more details on using hashes here.

File details

Details for the file rasterio-1.0.26-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.26-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.26-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 06d9624a43c28ceda2b04ca619336a8383d117281f21ae8df764320f2907ff4e
MD5 08efb0130511006719993207d4159c13
BLAKE2b-256 5972cdc79f10cf31237a2784a26a3fad584a8df98e6212bdd5c39767f10968ec

See more details on using hashes here.

File details

Details for the file rasterio-1.0.26-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.26-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b448fecbbbd852910776ec903dce27f404c2cbcfd147674c00578cbe3f25e175
MD5 fd692ca1713f4bcc6baacd5ed0bda22f
BLAKE2b-256 b091fa936f58bda83ea232c75f89fe6a6e359d959e0bf40644dcd07d1ce2db77

See more details on using hashes here.

File details

Details for the file rasterio-1.0.26-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.26-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.26-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0a0a7091c93549466b2e21681cc3ba85b5b2a2400feae4aa35b1dc46f075639f
MD5 ecee35b9682c137544c0dc78f234a0cb
BLAKE2b-256 8bc068c086e5917704e2b04d7f03a103303adce00655f3101952676845ee34a1

See more details on using hashes here.

File details

Details for the file rasterio-1.0.26-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.26-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c90b632774edbf65fc47617e866c2c8a9c60695fe68d570e2ce19fc9eb4ad940
MD5 c1ce8e80318ac04039427963581b79b1
BLAKE2b-256 6c1ffa442c0e1cde6de7007efbc1af9586325341b64b5e1994191c8a09dcc032

See more details on using hashes here.

File details

Details for the file rasterio-1.0.26-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.26-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.26-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ecca859a052a0b9c25ac5a4c384e60be53fe5c7408e2d743c0c282c141997240
MD5 f0244fba35ebbc96c0e783d546f9661f
BLAKE2b-256 7dda927976ce92ab1f11a30b25b62293d505f3d316c1f23995edf37a0eb7482a

See more details on using hashes here.

File details

Details for the file rasterio-1.0.26-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.26-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ec2b8aae12d7770acf1475f7abb676c8bd7f3d0a2a0019b5418f9092ae226a39
MD5 458ce51a4be913a43fb911966ba1269a
BLAKE2b-256 3e5ac07137d468e6944ba25b10537eef490ce9d535531f3fcf9bb8558d41aeda

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page