Skip to main content

Fast and direct raster I/O for use with Numpy and SciPy

Project description

Rasterio reads and writes geospatial raster data.

https://travis-ci.org/mapbox/rasterio.png?branch=master https://coveralls.io/repos/github/mapbox/rasterio/badge.svg?branch=master

Geographic information systems use GeoTIFF and other formats to organize and store gridded, or raster, datasets. Rasterio reads and writes these formats and provides a Python API based on N-D arrays.

Rasterio supports Python 2.7 and 3.3-3.6 on Linux and Mac OS X.

Read the documentation for more details: https://rasterio.readthedocs.io/.

Example

Here’s an example of some basic features that Rasterio provides. Three bands are read from an image and averaged to produce something like a panchromatic band. This new band is then written to a new single band TIFF.

import numpy as np
import rasterio

# Read raster bands directly to Numpy arrays.
#
with rasterio.open('tests/data/RGB.byte.tif') as src:
    r, g, b = src.read()

# Combine arrays in place. Expecting that the sum will
# temporarily exceed the 8-bit integer range, initialize it as
# a 64-bit float (the numpy default) array. Adding other
# arrays to it in-place converts those arrays "up" and
# preserves the type of the total array.
total = np.zeros(r.shape)
for band in r, g, b:
    total += band
total /= 3

# Write the product as a raster band to a new 8-bit file. For
# the new file's profile, we start with the meta attributes of
# the source file, but then change the band count to 1, set the
# dtype to uint8, and specify LZW compression.
profile = src.profile
profile.update(dtype=rasterio.uint8, count=1, compress='lzw')

with rasterio.open('example-total.tif', 'w', **profile) as dst:
    dst.write(total.astype(rasterio.uint8), 1)

The output:

http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg

API Overview

Rasterio gives access to properties of a geospatial raster file.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    print(src.width, src.height)
    print(src.crs)
    print(src.transform)
    print(src.count)
    print(src.indexes)

# Printed:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# Affine(300.0379266750948, 0.0, 101985.0,
#        0.0, -300.041782729805, 2826915.0)
# 3
# [1, 2, 3]

A rasterio dataset also provides methods for getting extended array slices given georeferenced coordinates.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    print src.window(**src.window_bounds(((100, 200), (100, 200))))

# Printed:
# ((100, 200), (100, 200))

Rasterio CLI

Rasterio’s command line interface, named “rio”, is documented at cli.rst. Its rio insp command opens the hood of any raster dataset so you can poke around using Python.

$ rio insp tests/data/RGB.byte.tif
Rasterio 0.10 Interactive Inspector (Python 3.4.1)
Type "src.meta", "src.read(1)", or "help(src)" for more information.
>>> src.name
'tests/data/RGB.byte.tif'
>>> src.closed
False
>>> src.shape
(718, 791)
>>> src.crs
{'init': 'epsg:32618'}
>>> b, g, r = src.read()
>>> b
masked_array(data =
 [[-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 ...,
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]],
             mask =
 [[ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 ...,
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]],
       fill_value = 0)

>>> np.nanmin(b), np.nanmax(b), np.nanmean(b)
(0, 255, 29.94772668847656)

Rio Plugins

Rio provides the ability to create subcommands using plugins. See cli.rst for more information on building plugins.

See the plugin registry for a list of available plugins.

Installation

Please install Rasterio in a virtual environment so that its requirements don’t tamper with your system’s Python.

SSL certs

The Linux wheels on PyPI are built on CentOS and libcurl expects certs to be in /etc/pki/tls/certs/ca-bundle.crt. Ubuntu’s certs, for example, are in a different location. You may need to use the CURL_CA_BUNDLE environment variable to specify the location of SSL certs on your computer. On an Ubuntu system set the variable as shown below.

$ export CURL_CA_BUNDLE=/etc/ssl/certs/ca-certificates.crt

Dependencies

Rasterio has a C library dependency: GDAL >=1.11. GDAL itself depends on some other libraries provided by most major operating systems and also depends on the non standard GEOS and PROJ4 libraries. How to meet these requirement will be explained below.

Rasterio’s Python dependencies are listed in its requirements.txt file.

Development also requires (see requirements-dev.txt) Cython and other packages.

Binary Distributions

Use a binary distributions that directly or indirectly provide GDAL if possible.

Linux

Rasterio distributions are available from UbuntuGIS and Anaconda’s conda-forge channel.

Manylinux1 wheels are available on PyPI.```

OS X

Binary distributions with GDAL, GEOS, and PROJ4 libraries included are available for OS X versions 10.7+ starting with Rasterio version 0.17. To install, run pip install rasterio. These binary wheels are preferred by newer versions of pip.

If you don’t want these wheels and want to install from a source distribution, run pip install rasterio --no-binary rasterio instead.

The included GDAL library is fairly minimal, providing only the format drivers that ship with GDAL and are enabled by default. To get access to more formats, you must build from a source distribution (see below).

Windows

Binary wheels for rasterio and GDAL are created by Christoph Gohlke and are available from his website.

To install rasterio, simply download both binaries for your system (rasterio and GDAL) and run something like this from the downloads folder:

$ pip install -U pip
$ pip install GDAL-2.0.2-cp27-none-win32.whl
$ pip install rasterio-0.34.0-cp27-cp27m-win32.whl

You can also install rasterio with conda using Anaconda’s conda-forge channel.

$ conda install -c conda-forge rasterio

Source Distributions

Rasterio is a Python C extension and to build you’ll need a working compiler (XCode on OS X etc). You’ll also need Numpy preinstalled; the Numpy headers are required to run the rasterio setup script. Numpy has to be installed (via the indicated requirements file) before rasterio can be installed. See rasterio’s Travis configuration for more guidance.

Linux

The following commands are adapted from Rasterio’s Travis-CI configuration.

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
$ sudo apt-get install gdal-bin libgdal-dev
$ pip install -U pip
$ pip install rasterio

Adapt them as necessary for your Linux system.

OS X

For a Homebrew based Python environment, do the following.

$ brew update
$ brew install gdal
$ pip install -U pip
$ pip install --no-use-wheel rasterio

Alternatively, you can install GDAL binaries from kyngchaos. You will then need to add the installed location /Library/Frameworks/GDAL.framework/Programs to your system path.

Windows

You can download a binary distribution of GDAL from here. You will also need to download the compiled libraries and headers (include files).

When building from source on Windows, it is important to know that setup.py cannot rely on gdal-config, which is only present on UNIX systems, to discover the locations of header files and libraries that rasterio needs to compile its C extensions. On Windows, these paths need to be provided by the user. You will need to find the include files and the library files for gdal and use setup.py as follows.

$ python setup.py build_ext -I<path to gdal include files> -lgdal_i -L<path to gdal library>
$ python setup.py install

We have had success compiling code using the same version of Microsoft’s Visual Studio used to compile the targeted version of Python (more info on versions used here.).

Note: The GDAL dll (gdal111.dll) and gdal-data directory need to be in your Windows PATH otherwise rasterio will fail to work.

Support

The primary forum for questions about installation and usage of Rasterio is https://rasterio.groups.io/g/main. The authors and other users will answer questions when they have expertise to share and time to explain. Please take the time to craft a clear question and be patient about responses.

Please do not bring these questions to Rasterio’s issue tracker, which we want to reserve for bug reports and other actionable issues.

While Rasterio’s repo is in the Mapbox GitHub organization, Mapbox’s Support team is focused on customer support for its commercial platform and Rasterio support requests may be perfunctorily closed with or without a link to https://rasterio.groups.io/g/main. It’s better to bring questions directly to the main Rasterio group at groups.io.

Development and Testing

See CONTRIBUTING.rst.

Documentation

See docs/.

License

See LICENSE.txt.

Authors

See AUTHORS.txt.

Changes

See CHANGES.txt.

Who is Using Rasterio?

See here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasterio-1.0.27.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

rasterio-1.0.27-cp37-cp37m-manylinux1_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.7m

rasterio-1.0.27-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.6 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.0.27-cp36-cp36m-manylinux1_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.6m

rasterio-1.0.27-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.0.27-cp35-cp35m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.5m

rasterio-1.0.27-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.6 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.0.27-cp27-cp27mu-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.7mu

rasterio-1.0.27-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file rasterio-1.0.27.tar.gz.

File metadata

  • Download URL: rasterio-1.0.27.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.27.tar.gz
Algorithm Hash digest
SHA256 403d2c80cddd6395f3fe5474f43333415dc0dcf430d861de82234988d20d6147
MD5 1b47c3fbc615ff117bf1599fb6688b63
BLAKE2b-256 acd9c369236ff112376a298bbd615471b6786e8974656c66e9db679f432f8932

See more details on using hashes here.

File details

Details for the file rasterio-1.0.27-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.27-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.27-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 161028674eaa0da4db3c9ef8d85fb0665835e27636c27566cf029b73cbfb87cf
MD5 65bc29a2e5e619afcced9bcfb255f832
BLAKE2b-256 452657685b71abc04b794788d6760af7693b0a8184ded29b25627dd1bd82df10

See more details on using hashes here.

File details

Details for the file rasterio-1.0.27-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.27-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d6c86edae3cc0a74910cd2edafaeadc14b5b94e4930294a11af6b2faa731df8d
MD5 ac4e04a02b09bffb1fb6b60f0b42a0ec
BLAKE2b-256 83e6a1f98e9c13797f5428a33fa571eee158384e914f95b84cd2107dc9975dbd

See more details on using hashes here.

File details

Details for the file rasterio-1.0.27-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.27-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.27-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a780d9fa8170205b290c640808abffc4727227c6d5c0254b98b2be1660437d60
MD5 fccc722ab684d683b9c4d6c1f9ec3029
BLAKE2b-256 008235af043530df69fa4d0dcd767974e9ddb5590c8fd70bcdbf072a0d5d37be

See more details on using hashes here.

File details

Details for the file rasterio-1.0.27-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.27-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9ada18cb5f92098f4e25f4c67bae4e759d94db2b5bda021df9a71fd23d30aa1e
MD5 79ac7cd77699ed66520c377720054aba
BLAKE2b-256 4782a740796ceb5ed76403ee0bb59bb374a852826ac1ff74eafe40d70d59c5ac

See more details on using hashes here.

File details

Details for the file rasterio-1.0.27-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.27-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.27-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4f0dfc1d430984d41c64831870091c3c6cdfa56ba34ce61fcc87f825ea8c7d53
MD5 2c4f402818ff98a1b06ff4b7bead7a9a
BLAKE2b-256 7f7e47e8f6294f8bc4850836dd41869cf6959cd72d1ba9dbe79deac7ec22cbc6

See more details on using hashes here.

File details

Details for the file rasterio-1.0.27-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.27-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 41956410968e52598b25bdb1b35b91fc91068d430ca981a205a880c2d99e585e
MD5 4bcb5fa7b3e4136646477baff3f3406c
BLAKE2b-256 6078e9b7ed35ed40c3647a97afca7122d89019db965cc0d9ef12232190596850

See more details on using hashes here.

File details

Details for the file rasterio-1.0.27-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.0.27-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.0.27-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 90edf8fb6f1cde7a7a9b747c7e3b5264fe92bf0891c1600790a66f360fd92ed7
MD5 4a854609cb963b83cb0ced275f5ba8eb
BLAKE2b-256 cd57c8b7f1e73d5f9217ccb56cc55b59a209f248b69e6413a6e6eb16e6a3e115

See more details on using hashes here.

File details

Details for the file rasterio-1.0.27-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.0.27-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 48c96fc078fb7afde3cde2d07b2ae93a07c3b6232d735e6ea2da3d135deb72af
MD5 5fd2ff8a9792166e051a8632df9cd35b
BLAKE2b-256 1832e0fb7015e5ba5af169361be5df11413afcedd8d7a654c212adf9aa5f67ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page