Skip to main content

Fast and direct raster I/O for use with Numpy and SciPy

Project description

Rasterio reads and writes geospatial raster data.

https://travis-ci.org/mapbox/rasterio.png?branch=master https://coveralls.io/repos/github/mapbox/rasterio/badge.svg?branch=master

Geographic information systems use GeoTIFF and other formats to organize and store gridded, or raster, datasets. Rasterio reads and writes these formats and provides a Python API based on N-D arrays.

Rasterio 1.0.x works with Python versions 2.7.x and 3.5.0 through 3.7.x, and GDAL versions 1.11.x through 2.4.x. Official binary packages for Linux and Mac OS X are available on PyPI. Unofficial binary packages for Windows are available through other channels.

Rasterio 1.0.x is not compatible with GDAL versions 3.0.0 or greater.

Read the documentation for more details: https://rasterio.readthedocs.io/.

Example

Here’s an example of some basic features that Rasterio provides. Three bands are read from an image and averaged to produce something like a panchromatic band. This new band is then written to a new single band TIFF.

import numpy as np
import rasterio

# Read raster bands directly to Numpy arrays.
#
with rasterio.open('tests/data/RGB.byte.tif') as src:
    r, g, b = src.read()

# Combine arrays in place. Expecting that the sum will
# temporarily exceed the 8-bit integer range, initialize it as
# a 64-bit float (the numpy default) array. Adding other
# arrays to it in-place converts those arrays "up" and
# preserves the type of the total array.
total = np.zeros(r.shape)
for band in r, g, b:
    total += band
total /= 3

# Write the product as a raster band to a new 8-bit file. For
# the new file's profile, we start with the meta attributes of
# the source file, but then change the band count to 1, set the
# dtype to uint8, and specify LZW compression.
profile = src.profile
profile.update(dtype=rasterio.uint8, count=1, compress='lzw')

with rasterio.open('example-total.tif', 'w', **profile) as dst:
    dst.write(total.astype(rasterio.uint8), 1)

The output:

http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg

API Overview

Rasterio gives access to properties of a geospatial raster file.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    print(src.width, src.height)
    print(src.crs)
    print(src.transform)
    print(src.count)
    print(src.indexes)

# Printed:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# Affine(300.0379266750948, 0.0, 101985.0,
#        0.0, -300.041782729805, 2826915.0)
# 3
# [1, 2, 3]

A rasterio dataset also provides methods for getting extended array slices given georeferenced coordinates.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    print src.window(**src.window_bounds(((100, 200), (100, 200))))

# Printed:
# ((100, 200), (100, 200))

Rasterio CLI

Rasterio’s command line interface, named “rio”, is documented at cli.rst. Its rio insp command opens the hood of any raster dataset so you can poke around using Python.

$ rio insp tests/data/RGB.byte.tif
Rasterio 0.10 Interactive Inspector (Python 3.4.1)
Type "src.meta", "src.read(1)", or "help(src)" for more information.
>>> src.name
'tests/data/RGB.byte.tif'
>>> src.closed
False
>>> src.shape
(718, 791)
>>> src.crs
{'init': 'epsg:32618'}
>>> b, g, r = src.read()
>>> b
masked_array(data =
 [[-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 ...,
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]],
             mask =
 [[ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 ...,
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]],
       fill_value = 0)

>>> np.nanmin(b), np.nanmax(b), np.nanmean(b)
(0, 255, 29.94772668847656)

Rio Plugins

Rio provides the ability to create subcommands using plugins. See cli.rst for more information on building plugins.

See the plugin registry for a list of available plugins.

Installation

Please install Rasterio in a virtual environment so that its requirements don’t tamper with your system’s Python.

SSL certs

The Linux wheels on PyPI are built on CentOS and libcurl expects certs to be in /etc/pki/tls/certs/ca-bundle.crt. Ubuntu’s certs, for example, are in a different location. You may need to use the CURL_CA_BUNDLE environment variable to specify the location of SSL certs on your computer. On an Ubuntu system set the variable as shown below.

$ export CURL_CA_BUNDLE=/etc/ssl/certs/ca-certificates.crt

Dependencies

Rasterio has a C library dependency: GDAL >=1.11. GDAL itself depends on some other libraries provided by most major operating systems and also depends on the non standard GEOS and PROJ4 libraries. How to meet these requirement will be explained below.

Rasterio’s Python dependencies are listed in its requirements.txt file.

Development also requires (see requirements-dev.txt) Cython and other packages.

Binary Distributions

Use a binary distributions that directly or indirectly provide GDAL if possible.

Linux

Rasterio distributions are available from UbuntuGIS and Anaconda’s conda-forge channel.

Manylinux1 wheels are available on PyPI.

OS X

Binary distributions with GDAL, GEOS, and PROJ4 libraries included are available for OS X versions 10.7+ starting with Rasterio version 0.17. To install, run pip install rasterio. These binary wheels are preferred by newer versions of pip.

If you don’t want these wheels and want to install from a source distribution, run pip install rasterio --no-binary rasterio instead.

The included GDAL library is fairly minimal, providing only the format drivers that ship with GDAL and are enabled by default. To get access to more formats, you must build from a source distribution (see below).

Windows

Binary wheels for rasterio and GDAL are created by Christoph Gohlke and are available from his website.

To install rasterio, simply download both binaries for your system (rasterio and GDAL) and run something like this from the downloads folder:

$ pip install -U pip
$ pip install GDAL-2.0.2-cp27-none-win32.whl
$ pip install rasterio-0.34.0-cp27-cp27m-win32.whl

You can also install rasterio with conda using Anaconda’s conda-forge channel.

$ conda install -c conda-forge rasterio

Source Distributions

Rasterio is a Python C extension and to build you’ll need a working compiler (XCode on OS X etc). You’ll also need Numpy preinstalled; the Numpy headers are required to run the rasterio setup script. Numpy has to be installed (via the indicated requirements file) before rasterio can be installed. See rasterio’s Travis configuration for more guidance.

Linux

The following commands are adapted from Rasterio’s Travis-CI configuration.

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
$ sudo apt-get install gdal-bin libgdal-dev
$ pip install -U pip
$ pip install rasterio

Adapt them as necessary for your Linux system.

OS X

For a Homebrew based Python environment, do the following.

$ brew update
$ brew install gdal
$ pip install -U pip
$ pip install --no-use-wheel rasterio

Alternatively, you can install GDAL binaries from kyngchaos. You will then need to add the installed location /Library/Frameworks/GDAL.framework/Programs to your system path.

Windows

You can download a binary distribution of GDAL from here. You will also need to download the compiled libraries and headers (include files).

When building from source on Windows, it is important to know that setup.py cannot rely on gdal-config, which is only present on UNIX systems, to discover the locations of header files and libraries that rasterio needs to compile its C extensions. On Windows, these paths need to be provided by the user. You will need to find the include files and the library files for gdal and use setup.py as follows.

$ python setup.py build_ext -I<path to gdal include files> -lgdal_i -L<path to gdal library>
$ python setup.py install

We have had success compiling code using the same version of Microsoft’s Visual Studio used to compile the targeted version of Python (more info on versions used here.).

Note: The GDAL dll (gdal111.dll) and gdal-data directory need to be in your Windows PATH otherwise rasterio will fail to work.

Support

The primary forum for questions about installation and usage of Rasterio is https://rasterio.groups.io/g/main. The authors and other users will answer questions when they have expertise to share and time to explain. Please take the time to craft a clear question and be patient about responses.

Please do not bring these questions to Rasterio’s issue tracker, which we want to reserve for bug reports and other actionable issues.

While Rasterio’s repo is in the Mapbox GitHub organization, Mapbox’s Support team is focused on customer support for its commercial platform and Rasterio support requests may be perfunctorily closed with or without a link to https://rasterio.groups.io/g/main. It’s better to bring questions directly to the main Rasterio group at groups.io.

Development and Testing

See CONTRIBUTING.rst.

Documentation

See docs/.

License

See LICENSE.txt.

Authors

See AUTHORS.txt.

Changes

See CHANGES.txt.

Who is Using Rasterio?

See here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasterio-1.1b1.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

rasterio-1.1b1-cp37-cp37m-manylinux1_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.7m

rasterio-1.1b1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.1b1-cp36-cp36m-manylinux1_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.6m

rasterio-1.1b1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.8 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.1b1-cp35-cp35m-manylinux1_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.5m

rasterio-1.1b1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.6 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

rasterio-1.1b1-cp27-cp27mu-manylinux1_x86_64.whl (15.1 MB view details)

Uploaded CPython 2.7mu

rasterio-1.1b1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (23.7 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file rasterio-1.1b1.tar.gz.

File metadata

  • Download URL: rasterio-1.1b1.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.1b1.tar.gz
Algorithm Hash digest
SHA256 8329d4b28f07eb5150e9d039628a975186f1527c4749412cd56211e087c59116
MD5 10f03da4e136ac70aa545d3ecc123c37
BLAKE2b-256 9ff16cf424b20fcc2668750ee7cac18c26204792dca99902f63979b36e88177d

See more details on using hashes here.

File details

Details for the file rasterio-1.1b1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.1b1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.1b1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9dd6e7ebac447891222c6aef6acd78db588413c4c3b206530b0dc7eef9527c1b
MD5 1cea4ccb9ab8751f9e54405b31d3a0b0
BLAKE2b-256 1d5c933a4f64851da1ea628d5e9bcc7e8bcc85750d536b99da92749c4e61f3ee

See more details on using hashes here.

File details

Details for the file rasterio-1.1b1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.1b1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d654ea72fa3333896e18220ca068f6fa71b6f7a9eec18b105d4881a7e506ad40
MD5 290db553b8fd8c0b609d701530136abf
BLAKE2b-256 6e5819e57b8afdd110148089de10a5673478c4a51240f99b0c799519b7fa7e10

See more details on using hashes here.

File details

Details for the file rasterio-1.1b1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.1b1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.1b1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0c5c3f91d940b1d20579c6e64540da6d5a0a54f1ee487ea45d238551c0598cc8
MD5 029eb0d28072d53e89a834e9a0168e49
BLAKE2b-256 7cc3adbfe28fc36d8fe77b655621d95b0c598ccd901583bdbb8dc7703aa2da99

See more details on using hashes here.

File details

Details for the file rasterio-1.1b1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.1b1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 bbc528636e4db86c96b90ab9131028c1c008ed2906e7dbdc74a09cca3b6abb78
MD5 e2e56013fe6f89bd996f2110e664e5f6
BLAKE2b-256 0c6277490a962307549fbbc11511c5b91005a9aab310eb513dca8857b7eb5775

See more details on using hashes here.

File details

Details for the file rasterio-1.1b1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.1b1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.1b1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 74c6babecc0b754411870c394511e8c4a5279b2ef0306cfe5708a73b2f5127be
MD5 b1b8c7e2d69614b5ec87300542e05367
BLAKE2b-256 f1ed106069143a257b189605785665e4cbbdb6e8d02d0b68cb43b4f60e2c301f

See more details on using hashes here.

File details

Details for the file rasterio-1.1b1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.1b1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2f960ea4a437691ab0963103c869352a93a1cc73081bf199de972079e9a0309b
MD5 14ef1e4fc0ed23aebfe92dfef9365370
BLAKE2b-256 5d6a3a7b81931ab7c1ad60e241c1998247b40e7aa6eb5c6325f147fa2f07dde5

See more details on using hashes here.

File details

Details for the file rasterio-1.1b1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: rasterio-1.1b1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for rasterio-1.1b1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3f31a3bf437285169fb7c98877628fac095462bfc5516eb3e2eb70c78fb09bd3
MD5 635bb9bfe575dc9be05c882771f790ce
BLAKE2b-256 f082b7ead183dee2fdd61dc330cc9451759aef21906fae76095b3a2b677e00f9

See more details on using hashes here.

File details

Details for the file rasterio-1.1b1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.1b1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0271e17a9aeff17989c21ead524bae8937a1e8742a756b2edf5391ea1411ac91
MD5 18d32cdddc33636a161ecb236412dd96
BLAKE2b-256 74eb6b749fa5acf4e20bcb20cf1c83d3104558f51d07ed235be91d6155b44010

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page