Skip to main content

Fast and direct raster I/O for use with Numpy and SciPy

Project description

Rasterio reads and writes geospatial raster data.

https://app.travis-ci.com/rasterio/rasterio.svg?branch=master https://coveralls.io/repos/github/mapbox/rasterio/badge.svg?branch=master https://img.shields.io/pypi/v/rasterio

Geographic information systems use GeoTIFF and other formats to organize and store gridded, or raster, datasets. Rasterio reads and writes these formats and provides a Python API based on N-D arrays.

Rasterio 1.3 works with Python 3.8+, Numpy 1.18+, and GDAL 3.1+. Official binary packages for Linux, macOS, and Windows with most built-in format drivers plus HDF5, netCDF, and OpenJPEG2000 are available on PyPI. Unofficial binary packages for Windows are available through other channels.

Read the documentation for more details: https://rasterio.readthedocs.io/.

Example

Here’s an example of some basic features that Rasterio provides. Three bands are read from an image and averaged to produce something like a panchromatic band. This new band is then written to a new single band TIFF.

import numpy as np
import rasterio

# Read raster bands directly to Numpy arrays.
#
with rasterio.open('tests/data/RGB.byte.tif') as src:
    r, g, b = src.read()

# Combine arrays in place. Expecting that the sum will
# temporarily exceed the 8-bit integer range, initialize it as
# a 64-bit float (the numpy default) array. Adding other
# arrays to it in-place converts those arrays "up" and
# preserves the type of the total array.
total = np.zeros(r.shape)

for band in r, g, b:
    total += band

total /= 3

# Write the product as a raster band to a new 8-bit file. For
# the new file's profile, we start with the meta attributes of
# the source file, but then change the band count to 1, set the
# dtype to uint8, and specify LZW compression.
profile = src.profile
profile.update(dtype=rasterio.uint8, count=1, compress='lzw')

with rasterio.open('example-total.tif', 'w', **profile) as dst:
    dst.write(total.astype(rasterio.uint8), 1)

The output:

http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg

API Overview

Rasterio gives access to properties of a geospatial raster file.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    print(src.width, src.height)
    print(src.crs)
    print(src.transform)
    print(src.count)
    print(src.indexes)

# Printed:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# Affine(300.0379266750948, 0.0, 101985.0,
#        0.0, -300.041782729805, 2826915.0)
# 3
# [1, 2, 3]

A rasterio dataset also provides methods for getting read/write windows (like extended array slices) given georeferenced coordinates.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    window = src.window(*src.bounds)
    print(window)
    print(src.read(window=window).shape)

# Printed:
# Window(col_off=0.0, row_off=0.0, width=791.0000000000002, height=718.0)
# (3, 718, 791)

Rasterio CLI

Rasterio’s command line interface, named “rio”, is documented at cli.rst. Its rio insp command opens the hood of any raster dataset so you can poke around using Python.

$ rio insp tests/data/RGB.byte.tif
Rasterio 0.10 Interactive Inspector (Python 3.4.1)
Type "src.meta", "src.read(1)", or "help(src)" for more information.
>>> src.name
'tests/data/RGB.byte.tif'
>>> src.closed
False
>>> src.shape
(718, 791)
>>> src.crs
{'init': 'epsg:32618'}
>>> b, g, r = src.read()
>>> b
masked_array(data =
 [[-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 ...,
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]],
             mask =
 [[ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 ...,
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]],
       fill_value = 0)

>>> np.nanmin(b), np.nanmax(b), np.nanmean(b)
(0, 255, 29.94772668847656)

Rio Plugins

Rio provides the ability to create subcommands using plugins. See cli.rst for more information on building plugins.

See the plugin registry for a list of available plugins.

Installation

Please install Rasterio in a virtual environment so that its requirements don’t tamper with your system’s Python.

SSL certs

The Linux wheels on PyPI are built on CentOS and libcurl expects certs to be in /etc/pki/tls/certs/ca-bundle.crt. Ubuntu’s certs, for example, are in a different location. You may need to use the CURL_CA_BUNDLE environment variable to specify the location of SSL certs on your computer. On an Ubuntu system set the variable as shown below.

$ export CURL_CA_BUNDLE=/etc/ssl/certs/ca-certificates.crt

Dependencies

Rasterio has a C library dependency: GDAL >= 3.1. GDAL itself depends on some other libraries provided by most major operating systems and also depends on the non standard GEOS and PROJ libraries. How to meet these requirement will be explained below.

Rasterio’s Python dependencies are (see the package metadata file):

affine
attrs
certifi
click>=4.0
cligj>=0.5
numpy>=1.18
snuggs>=1.4.1
click-plugins
setuptools

[all]
hypothesis
pytest-cov>=2.2.0
matplotlib
boto3>=1.2.4
numpydoc
pytest>=2.8.2
shapely
ipython>=2.0
sphinx
packaging
ghp-import
sphinx-rtd-theme

[docs]
ghp-import
numpydoc
sphinx
sphinx-rtd-theme

[ipython]
ipython>=2.0

[plot]
matplotlib

[s3]
boto3>=1.2.4

[test]
boto3>=1.2.4
hypothesis
packaging
pytest-cov>=2.2.0
pytest>=2.8.2
shapely

Development requires Cython and other packages.

Binary Distributions

Use a binary distribution that directly or indirectly provides GDAL if possible.

The rasterio wheels on PyPI include GDAL and its own dependencies.

Rasterio

GDAL

1.2.3

3.2.2

1.2.4+

3.3.0

Linux

Rasterio distributions are available from UbuntuGIS and Anaconda’s conda-forge channel.

Manylinux1 wheels are available on PyPI.

OS X

Binary distributions with GDAL, GEOS, and PROJ4 libraries included are available for OS X versions 10.9+. To install, run pip install rasterio. These binary wheels are preferred by newer versions of pip.

If you don’t want these wheels and want to install from a source distribution, run pip install rasterio --no-binary rasterio instead.

The included GDAL library is fairly minimal, providing only the format drivers that ship with GDAL and are enabled by default. To get access to more formats, you must build from a source distribution (see below).

Windows

Binary wheels for rasterio and GDAL are created by Christoph Gohlke and are available from his website.

To install rasterio, simply download both binaries for your system (rasterio and GDAL) and run something like this from the downloads folder, adjusting for your Python version.

$ pip install -U pip
$ pip install GDAL-3.1.4-cp39-cp39‑win_amd64.whl
$ pip install rasterio‑1.1.8-cp39-cp39-win_amd64.whl

You can also install rasterio with conda using Anaconda’s conda-forge channel.

$ conda install -c conda-forge rasterio

Source Distributions

Rasterio is a Python C extension and to build you’ll need a working compiler (XCode on OS X etc). You’ll also need Numpy preinstalled; the Numpy headers are required to run the rasterio setup script. Numpy has to be installed (via the indicated requirements file) before rasterio can be installed. See rasterio’s Travis configuration for more guidance.

Linux

The following commands are adapted from Rasterio’s Travis-CI configuration.

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
$ sudo apt-get install gdal-bin libgdal-dev
$ pip install -U pip
$ pip install rasterio

Adapt them as necessary for your Linux system.

OS X

For a Homebrew based Python environment, do the following.

$ brew update
$ brew install gdal
$ pip install -U pip
$ pip install --no-binary rasterio

Windows

You can download a binary distribution of GDAL from here. You will also need to download the compiled libraries and headers (include files).

When building from source on Windows, it is important to know that setup.py cannot rely on gdal-config, which is only present on UNIX systems, to discover the locations of header files and libraries that rasterio needs to compile its C extensions. On Windows, these paths need to be provided by the user. You will need to find the include files and the library files for gdal and use setup.py as follows. You will also need to specify the installed gdal version through the GDAL_VERSION environment variable.

$ python setup.py build_ext -I<path to gdal include files> -lgdal_i -L<path to gdal library> install

With pip

$ pip install --no-use-pep517 --global-option -I<path to gdal include files> -lgdal_i -L<path to gdal library> .

Note: --no-use-pep517 is required as pip currently hasn’t implemented a way for optional arguments to be passed to the build backend when using PEP 517. See here for more details.

Alternatively environment variables (e.g. INCLUDE and LINK) used by MSVC compiler can be used to point to include directories and library files.

We have had success compiling code using the same version of Microsoft’s Visual Studio used to compile the targeted version of Python (more info on versions used here.).

Note: The GDAL DLL and gdal-data directory need to be in your Windows PATH otherwise rasterio will fail to work.

Support

The primary forum for questions about installation and usage of Rasterio is https://rasterio.groups.io/g/main. The authors and other users will answer questions when they have expertise to share and time to explain. Please take the time to craft a clear question and be patient about responses.

Please do not bring these questions to Rasterio’s issue tracker, which we want to reserve for bug reports and other actionable issues.

Development and Testing

See CONTRIBUTING.rst.

Documentation

See docs/.

License

See LICENSE.txt.

Authors

The rasterio project was begun at Mapbox and was transferred to the rasterio Github organization in October 2021.

See AUTHORS.txt.

Changes

See CHANGES.txt.

Who is Using Rasterio?

See here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasterio-1.3.11.tar.gz (413.1 kB view details)

Uploaded Source

Built Distributions

rasterio-1.3.11-cp313-cp313-win_amd64.whl (24.8 MB view details)

Uploaded CPython 3.13 Windows x86-64

rasterio-1.3.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

rasterio-1.3.11-cp313-cp313-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

rasterio-1.3.11-cp313-cp313-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.13 macOS 10.15+ x86-64

rasterio-1.3.11-cp312-cp312-win_amd64.whl (24.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

rasterio-1.3.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rasterio-1.3.11-cp312-cp312-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rasterio-1.3.11-cp312-cp312-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

rasterio-1.3.11-cp311-cp311-win_amd64.whl (24.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

rasterio-1.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rasterio-1.3.11-cp311-cp311-macosx_11_0_arm64.whl (18.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rasterio-1.3.11-cp311-cp311-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

rasterio-1.3.11-cp310-cp310-win_amd64.whl (24.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

rasterio-1.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rasterio-1.3.11-cp310-cp310-macosx_11_0_arm64.whl (18.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rasterio-1.3.11-cp310-cp310-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

rasterio-1.3.11-cp39-cp39-win_amd64.whl (24.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

rasterio-1.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rasterio-1.3.11-cp39-cp39-macosx_11_0_arm64.whl (18.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rasterio-1.3.11-cp39-cp39-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

rasterio-1.3.11-cp38-cp38-win_amd64.whl (24.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

rasterio-1.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rasterio-1.3.11-cp38-cp38-macosx_11_0_arm64.whl (18.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rasterio-1.3.11-cp38-cp38-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file rasterio-1.3.11.tar.gz.

File metadata

  • Download URL: rasterio-1.3.11.tar.gz
  • Upload date:
  • Size: 413.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.6

File hashes

Hashes for rasterio-1.3.11.tar.gz
Algorithm Hash digest
SHA256 47aa70b4718ebc80d825bb7db3127577d74e31c53048ce215145c0baf530ece9
MD5 3c05f7b86886b1dd392b85a91442adfd
BLAKE2b-256 726080f075e05e2ade12def9d65dc9f66b98519e52e5ac9ce1ba0aba1fbe73b5

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 962315780045dbd37a88d58516d2d73c5d4de7534102677b1c5e4c9b7ff4c5f9
MD5 f199d237552600dd5026eca0bc57ad45
BLAKE2b-256 7dee6ecb9661024931c90b329c1fbf5f1aa6951657241eb883927b8d9f71ed44

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2cd38249e07582c05b333d7b3c2c257852a1a36c347a189ba5d847b2cd130d88
MD5 745bb818b96aff944e45cd51571f76ef
BLAKE2b-256 20525ee82a9b101d120dd0552ce2dd9b1fc01eff2073c9b3f193f9d6bbd36306

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e9ae169dcc497d7bc6e059810ffa74c69c5d1173f62e7b3b1aaf1ce5a9a0a58
MD5 33c80182085905f197bcc7d0614f5448
BLAKE2b-256 b29484a5763bbdb8bfdccf046cbde5b20432fb671d0cf72880b03d4d81fed8ca

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp313-cp313-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp313-cp313-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 18d296abd40d220f062c4459968b77f157aa503a5d1b676d510475fbe9ba1331
MD5 def23e5e888b746f632f3823ca343850
BLAKE2b-256 dced2abc91b144a83fd45e5fa596ce0541676e5e2c27280fe6dfbf11e624536c

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5c811f77e20c439195f93367390ec054790b337b51f1ff689691a558976e80c6
MD5 8cb5b9a4a328e54d2ff4b573fc0912dc
BLAKE2b-256 30cc0192175dd6b213cd38f062ab7b071b31c2764a9f291770311a0b6d50ff0b

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 958d7cb4b81ed9bab8167eced60c3b0f4263c9d12dc7cfd395531ed5579baf07
MD5 79e090eb860ab2da1e186cfeb49c01fd
BLAKE2b-256 bd6b872012d5f275d1b065878d3ac076c7015248b2d5be6fb63894e9b08efcd2

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 476be03290bb937b63b14bb4394b1300c828d79cb4acc540fdc5cbdae8af8cf6
MD5 394904240d3678bfa6ac7f02fe0010b1
BLAKE2b-256 94646a34c3ba5b1d412d85f399fe761a2c9d2baeb57f8eee6932caf3b6ce1597

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6b62b576fa94bf31c0faabcd796d9f32ed23ea5620878bda2ba8258163b006cd
MD5 05a74f8adb8c36d80f8479ba5aa8a59e
BLAKE2b-256 720281ad42f7408cf88062ad8fd273de5b52d94ff07453c2e7f76080c2f9d462

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3fc055651d40ca8d0e02b80472d9081d7e6efa59a0a171fd20d243fcdd67a41c
MD5 90614d0fa7136fecd21c86961012e94a
BLAKE2b-256 a028ed59f8b361122c91273f2545c50636441927b257e02fbd32f7953987017a

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 171af16371988f2f12d29568c5cd963efaad9b27d5fea7596b58462a37e042b6
MD5 310f8c8b463081bfff4cea3656842073
BLAKE2b-256 a5ff96a0de6f44b1bfa8f06a49d6543fedfee98d427edb422831e89a79e419e8

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 04464e06a881c7447d91d92922a5f731131fa7d070f1b77b5a3fafc423bdd135
MD5 58059ae7384190485aad7faf6002b1f4
BLAKE2b-256 614d5e3f94a6c002743706f87e810680e00e3a7febe3ec125e51acfe1dc75d41

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e075be4d173d943b87fb1d40064b1a88e88666d20c2847654ceb2076fc1c0597
MD5 ef6f17d0e3b0c4aa3531fc63088d9d20
BLAKE2b-256 bbdf12b1c17403f0b3d5c5f50c45abe02654da193ec8dd1c8c19259f32a348dd

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d2c0287627570542b43b91f04ac5398b8ec5ff7651679b00505c61b1d4cce37d
MD5 95109d62d1d47c0c1406b1bf6455e287
BLAKE2b-256 8db7951151b53dc6f8d8efc1e0b783f0b2bf3c5c506e237a8baa3731f8862d9d

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 102c49a679ef96b336f5bd826cba461045906d735fb6b3623a5bc35be21a1105
MD5 98cb71288269b8f0d54c84d084bde017
BLAKE2b-256 41940d9fbcf77a1b76b896146ad5649a0edbd706bbf90ad234e9d241df1c31b8

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 24491dafca5baafc909c5b53f7b035c4ccfb0f18326b15b24c4d112754c6cc8f
MD5 d5d49552c8d1ee150edf4a8c84328a11
BLAKE2b-256 f0342fef1c32d0ae06046757e4f3da441d842ffd56059bf17b2d6ff616be0b0a

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f12e94dab367138a7c2fe6daf581ba84e6eb03c94fe0070c60c7a81cac2de0d3
MD5 037c10fab2538955cfbb94a28eb70164
BLAKE2b-256 b739aa5f648322e9b851cc92f5f50631d9fee4f219b268a7e10f015a097f849c

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rasterio-1.3.11-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 24.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.6

File hashes

Hashes for rasterio-1.3.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7394e324c6477f85e80ed2e2e0775a928e55f5706870c510b3b91d33e6338eda
MD5 c2c76efa547be27d557673319db8748d
BLAKE2b-256 4d67fb522ff9e3fe8c4c4704f733cdf9efb428cf0b165f8a687794f9d057e80a

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1abf049ac88534280a596989e1e19e8a880621defa7ed88562e7c747c5d4112
MD5 c20c465b52a421ae2172eba243d98454
BLAKE2b-256 222d9910258b0fd935782623d767fb9d655734a1132761d5ad67566023647c50

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d886b742f1edc6e6a4d17fd56b05c7929099a3da66266b7e3074f56fd0b08614
MD5 4ef93c7539ae629470e0b5710a99fdb3
BLAKE2b-256 e15ae8b867c9ef203e3a3e780cfc805d00ad04e8b1ebd5f6fadd641ef761703c

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a751f20c991f2c38bb26a987676e2e012cebb2ce6a0f83d774891152fec87b98
MD5 429ae99072bfe1a6fb08f3984b8ecdae
BLAKE2b-256 c3084e2e6291911862298e381b66c271aca4a48ecc1a9f18814a92ba9b4d0ceb

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rasterio-1.3.11-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 24.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.6

File hashes

Hashes for rasterio-1.3.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1f2addd17573a875101cd1f2b7d98980cce6521f3a5df1400f5d7d6b5d8d2a2c
MD5 e32055437595610e032e76654a03ef89
BLAKE2b-256 8ba3f98733ea07cc5b58e82e51b0a36c121788f1943a9b85ccd97036f0693489

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a2538862657c0f36475fc418ae4170698a37f9790f9498f27a9a82821120609
MD5 749f34e05099964345cd05d4bdca2348
BLAKE2b-256 6889d4e74765e318136f535211225237841f297d0292dc30545bdd58c0ee45f7

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d955d26884c8b40db03b92114e78bbc603294023e5b9ea381a24a1ac5695a89
MD5 aea62f8a6c18b1ff7b126703606600f9
BLAKE2b-256 069e35f4732669bd4d92ca2a05996f802a2f160614afb6e225885d3165cc3da2

See more details on using hashes here.

File details

Details for the file rasterio-1.3.11-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rasterio-1.3.11-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f2ecb588953c83a8adf33d6aa6234b87fbb56aa9110000c243627340224a7c22
MD5 0900503f8911db36328a9d74e6100c16
BLAKE2b-256 889736d150028084c4d7a7fe74badd02ef67c9f7f5ebd9c46eb10901213a7434

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page