Skip to main content

Fast and direct raster I/O for use with Numpy and SciPy

Project description

Rasterio reads and writes geospatial raster data.

https://app.travis-ci.com/rasterio/rasterio.svg?branch=master https://coveralls.io/repos/github/mapbox/rasterio/badge.svg?branch=master https://img.shields.io/pypi/v/rasterio

Geographic information systems use GeoTIFF and other formats to organize and store gridded, or raster, datasets. Rasterio reads and writes these formats and provides a Python API based on N-D arrays.

Rasterio 1.3 works with Python versions 3.8 through 3.10, Numpy versions 1.18 and newer, and GDAL versions 3.1 through 3.4. Official binary packages for Linux and Mac OS X with most built-in format drivers plus HDF5, netCDF, and OpenJPEG2000 are available on PyPI. Unofficial binary packages for Windows are available through other channels.

Read the documentation for more details: https://rasterio.readthedocs.io/.

Example

Here’s an example of some basic features that Rasterio provides. Three bands are read from an image and averaged to produce something like a panchromatic band. This new band is then written to a new single band TIFF.

import numpy as np
import rasterio

# Read raster bands directly to Numpy arrays.
#
with rasterio.open('tests/data/RGB.byte.tif') as src:
    r, g, b = src.read()

# Combine arrays in place. Expecting that the sum will
# temporarily exceed the 8-bit integer range, initialize it as
# a 64-bit float (the numpy default) array. Adding other
# arrays to it in-place converts those arrays "up" and
# preserves the type of the total array.
total = np.zeros(r.shape)

for band in r, g, b:
    total += band

total /= 3

# Write the product as a raster band to a new 8-bit file. For
# the new file's profile, we start with the meta attributes of
# the source file, but then change the band count to 1, set the
# dtype to uint8, and specify LZW compression.
profile = src.profile
profile.update(dtype=rasterio.uint8, count=1, compress='lzw')

with rasterio.open('example-total.tif', 'w', **profile) as dst:
    dst.write(total.astype(rasterio.uint8), 1)

The output:

http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg

API Overview

Rasterio gives access to properties of a geospatial raster file.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    print(src.width, src.height)
    print(src.crs)
    print(src.transform)
    print(src.count)
    print(src.indexes)

# Printed:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# Affine(300.0379266750948, 0.0, 101985.0,
#        0.0, -300.041782729805, 2826915.0)
# 3
# [1, 2, 3]

A rasterio dataset also provides methods for getting read/write windows (like extended array slices) given georeferenced coordinates.

with rasterio.open('tests/data/RGB.byte.tif') as src:
    window = src.window(*src.bounds)
    print(window)
    print(src.read(window=window).shape)

# Printed:
# Window(col_off=0.0, row_off=0.0, width=791.0000000000002, height=718.0)
# (3, 718, 791)

Rasterio CLI

Rasterio’s command line interface, named “rio”, is documented at cli.rst. Its rio insp command opens the hood of any raster dataset so you can poke around using Python.

$ rio insp tests/data/RGB.byte.tif
Rasterio 0.10 Interactive Inspector (Python 3.4.1)
Type "src.meta", "src.read(1)", or "help(src)" for more information.
>>> src.name
'tests/data/RGB.byte.tif'
>>> src.closed
False
>>> src.shape
(718, 791)
>>> src.crs
{'init': 'epsg:32618'}
>>> b, g, r = src.read()
>>> b
masked_array(data =
 [[-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 ...,
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]
 [-- -- -- ..., -- -- --]],
             mask =
 [[ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 ...,
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]
 [ True  True  True ...,  True  True  True]],
       fill_value = 0)

>>> np.nanmin(b), np.nanmax(b), np.nanmean(b)
(0, 255, 29.94772668847656)

Rio Plugins

Rio provides the ability to create subcommands using plugins. See cli.rst for more information on building plugins.

See the plugin registry for a list of available plugins.

Installation

Please install Rasterio in a virtual environment so that its requirements don’t tamper with your system’s Python.

SSL certs

The Linux wheels on PyPI are built on CentOS and libcurl expects certs to be in /etc/pki/tls/certs/ca-bundle.crt. Ubuntu’s certs, for example, are in a different location. You may need to use the CURL_CA_BUNDLE environment variable to specify the location of SSL certs on your computer. On an Ubuntu system set the variable as shown below.

$ export CURL_CA_BUNDLE=/etc/ssl/certs/ca-certificates.crt

Dependencies

Rasterio has a C library dependency: GDAL >= 2.3. GDAL itself depends on some other libraries provided by most major operating systems and also depends on the non standard GEOS and PROJ4 libraries. How to meet these requirement will be explained below.

Rasterio’s Python dependencies are (see the package metadata file):

affine
attrs
certifi
click>=4.0
cligj>=0.5
numpy
snuggs>=1.4.1
click-plugins
setuptools

[all]
hypothesis
pytest-cov>=2.2.0
matplotlib
boto3>=1.3.1
numpydoc
pytest>=2.8.2
shapely
ipython>=2.0
sphinx
packaging
ghp-import
sphinx-rtd-theme

[docs]
ghp-import
numpydoc
sphinx
sphinx-rtd-theme

[ipython]
ipython>=2.0

[plot]
matplotlib

[s3]
boto3>=1.3.1

[test]
boto3>=1.3.1
hypothesis
packaging
pytest-cov>=2.2.0
pytest>=2.8.2
shapely

Development requires Cython and other packages.

Binary Distributions

Use a binary distribution that directly or indirectly provides GDAL if possible.

The rasterio wheels on PyPI include GDAL and its own dependencies.

Rasterio

GDAL

1.2.3

3.2.2

1.2.4+

3.3.0

Linux

Rasterio distributions are available from UbuntuGIS and Anaconda’s conda-forge channel.

Manylinux1 wheels are available on PyPI.

OS X

Binary distributions with GDAL, GEOS, and PROJ4 libraries included are available for OS X versions 10.9+. To install, run pip install rasterio. These binary wheels are preferred by newer versions of pip.

If you don’t want these wheels and want to install from a source distribution, run pip install rasterio --no-binary rasterio instead.

The included GDAL library is fairly minimal, providing only the format drivers that ship with GDAL and are enabled by default. To get access to more formats, you must build from a source distribution (see below).

Windows

Binary wheels for rasterio and GDAL are created by Christoph Gohlke and are available from his website.

To install rasterio, simply download both binaries for your system (rasterio and GDAL) and run something like this from the downloads folder, adjusting for your Python version.

$ pip install -U pip
$ pip install GDAL-3.1.4-cp39-cp39‑win_amd64.whl
$ pip install rasterio‑1.1.8-cp39-cp39-win_amd64.whl

You can also install rasterio with conda using Anaconda’s conda-forge channel.

$ conda install -c conda-forge rasterio

Source Distributions

Rasterio is a Python C extension and to build you’ll need a working compiler (XCode on OS X etc). You’ll also need Numpy preinstalled; the Numpy headers are required to run the rasterio setup script. Numpy has to be installed (via the indicated requirements file) before rasterio can be installed. See rasterio’s Travis configuration for more guidance.

Linux

The following commands are adapted from Rasterio’s Travis-CI configuration.

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
$ sudo apt-get install gdal-bin libgdal-dev
$ pip install -U pip
$ pip install rasterio

Adapt them as necessary for your Linux system.

OS X

For a Homebrew based Python environment, do the following.

$ brew update
$ brew install gdal
$ pip install -U pip
$ pip install --no-binary rasterio

Windows

You can download a binary distribution of GDAL from here. You will also need to download the compiled libraries and headers (include files).

When building from source on Windows, it is important to know that setup.py cannot rely on gdal-config, which is only present on UNIX systems, to discover the locations of header files and libraries that rasterio needs to compile its C extensions. On Windows, these paths need to be provided by the user. You will need to find the include files and the library files for gdal and use setup.py as follows. You will also need to specify the installed gdal version through the GDAL_VERSION environment variable.

$ python setup.py build_ext -I<path to gdal include files> -lgdal_i -L<path to gdal library> install

With pip

$ pip install --no-use-pep517 --global-option -I<path to gdal include files> -lgdal_i -L<path to gdal library> .

Note: --no-use-pep517 is required as pip currently hasn’t implemented a way for optional arguments to be passed to the build backend when using PEP 517. See here for more details.

Alternatively environment variables (e.g. INCLUDE and LINK) used by MSVC compiler can be used to point to include directories and library files.

We have had success compiling code using the same version of Microsoft’s Visual Studio used to compile the targeted version of Python (more info on versions used here.).

Note: The GDAL DLL and gdal-data directory need to be in your Windows PATH otherwise rasterio will fail to work.

Support

The primary forum for questions about installation and usage of Rasterio is https://rasterio.groups.io/g/main. The authors and other users will answer questions when they have expertise to share and time to explain. Please take the time to craft a clear question and be patient about responses.

Please do not bring these questions to Rasterio’s issue tracker, which we want to reserve for bug reports and other actionable issues.

Development and Testing

See CONTRIBUTING.rst.

Documentation

See docs/.

License

See LICENSE.txt.

Authors

The rasterio project was begun at Mapbox and was transferred to the rasterio Github organization in October 2021.

See AUTHORS.txt.

Changes

See CHANGES.txt.

Who is Using Rasterio?

See here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rasterio-1.3b1.tar.gz (402.6 kB view details)

Uploaded Source

Built Distributions

rasterio-1.3b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rasterio-1.3b1-cp310-cp310-macosx_10_10_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.10 macOS 10.10+ x86-64

rasterio-1.3b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rasterio-1.3b1-cp39-cp39-macosx_10_10_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.9 macOS 10.10+ x86-64

rasterio-1.3b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rasterio-1.3b1-cp38-cp38-macosx_10_10_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.8 macOS 10.10+ x86-64

File details

Details for the file rasterio-1.3b1.tar.gz.

File metadata

  • Download URL: rasterio-1.3b1.tar.gz
  • Upload date:
  • Size: 402.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for rasterio-1.3b1.tar.gz
Algorithm Hash digest
SHA256 eeee18940f0991d3c287a3fae293319fe6a6dba1b3489929e395b001b1e6f14a
MD5 6cb6d661593a96208568a94314748f03
BLAKE2b-256 55681adb5d3852828b5a64fdfac24778fada8341dc92c0903b8a931f4f6a2f51

See more details on using hashes here.

File details

Details for the file rasterio-1.3b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rasterio-1.3b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for rasterio-1.3b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b941cd51a3b86af5c15d149e10f7cbc100860aede42d92e8758278138b07ef69
MD5 a214a6605f7d4c6253cc2b6e974a9d51
BLAKE2b-256 8043770d68881d325f1dcdcc11bf69f2aed2a10b4fa907655ff0d608017d07c9

See more details on using hashes here.

File details

Details for the file rasterio-1.3b1-cp310-cp310-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: rasterio-1.3b1-cp310-cp310-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 24.2 MB
  • Tags: CPython 3.10, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for rasterio-1.3b1-cp310-cp310-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 df9b639b97c7618044d4ef970033ec4a31d2f266318f628845129d4c442d5456
MD5 a05b2ba83913926a75b69d20931a215e
BLAKE2b-256 1f4305a4e2b2c4fae1d48bf9d90bde47cfe2d9706ee377db436170b2575dd327

See more details on using hashes here.

File details

Details for the file rasterio-1.3b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rasterio-1.3b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for rasterio-1.3b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d271f78de485a18578be063fd344c3928ba3179aae9cddaeb8f81f52f781b51f
MD5 7fab6e106c4d640c3e8fd782296efbe4
BLAKE2b-256 f63d047f2c0c206919d9971bab52dc72254c8eaffeea039c2052eeb4ce3e6ceb

See more details on using hashes here.

File details

Details for the file rasterio-1.3b1-cp39-cp39-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: rasterio-1.3b1-cp39-cp39-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 24.2 MB
  • Tags: CPython 3.9, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for rasterio-1.3b1-cp39-cp39-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 4129f8f19482eda3773d7bf01fbc1c370a9693bab2320edf703150ee159910c5
MD5 1d8e1739b875f999e402109fa0d6509e
BLAKE2b-256 e2897be3c954510733771bc75c6d1d53fd4df024bfc54aae1fd4fbba90d7b7b9

See more details on using hashes here.

File details

Details for the file rasterio-1.3b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rasterio-1.3b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for rasterio-1.3b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 774263bd2ef6dc894aaae4dcd3e20eb0fbb0bc92164eb1c205a4ce7d61ffcb15
MD5 023a1e50a3d0599849ebd28dbb52ae48
BLAKE2b-256 9867b109f6741a95dc9453396d75b2d487b92786a72ef66f004d1951ee2301c3

See more details on using hashes here.

File details

Details for the file rasterio-1.3b1-cp38-cp38-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: rasterio-1.3b1-cp38-cp38-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 24.2 MB
  • Tags: CPython 3.8, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for rasterio-1.3b1-cp38-cp38-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 824c7774401ec87b052b7ea52959bbe07e2a3e303b13df3ef8df4a71e8f9f6e5
MD5 85ecb9564deeaeb0425273355ecbc0c3
BLAKE2b-256 43e258beece144e922acbd63b7456ee61b5480b9db1c95e9b6c46f5a3441bb37

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page