Skip to main content

Summarize geospatial raster datasets based on vector geometries

Project description

BuildStatus CoverageStatus PyPiVersion PyPiDownloads

The rasterstats python module provides a fast and flexible tool to summarize geospatial raster datasets based on vector geometries (i.e. zonal statistics).

  • Raster data support

    • Any raster data source supported by GDAL

    • Support for continuous and categorical

    • Respects null/no-data metadata or takes argument

  • Vector data support

    • Points, Lines, Polygon and Multi-* geometries

    • Flexible input formats

      • Any vector data source supported by OGR

      • Python objects that are geojson-like mappings or support the geo_interface

      • Well-Known Text/Binary (WKT/WKB) geometries

  • Depends on GDAL, Shapely and numpy

Install

Using ubuntu 12.04:

sudo apt-get install python-numpy python-gdal
pip install rasterstats

Example Usage

Given a polygon vector layer and a digitial elevation model (DEM) raster, calculate the mean elevation of each polygon:

zones elevation
>>> from rasterstats import raster_stats
>>> stats = raster_stats("tests/data/polygons.shp", "tests/data/elevation.tif")

>>> stats[1].keys()
    ['__fid__', 'count', 'min', 'max', 'mean']

>>> [(f['__fid__'], f['mean']) for f in stats]
    [(1, 756.6057470703125), (2, 114.660084635416666)]

Statistics

By default, the raster_stats function will return the following statistics

  • min

  • max

  • mean

  • count

Optionally, these statistics are also available

  • sum

  • std

  • median

  • majority

  • minority

  • unique

  • range

You can specify the statistics to calculate using the stats argument:

>>> stats = raster_stats("tests/data/polygons.shp",
                         "tests/data/elevation.tif"
                         stats=['min', 'max', 'median', 'majority', 'sum'])

>>> # also takes space-delimited string
>>> stats = raster_stats("tests/data/polygons.shp",
                         "tests/data/elevation.tif"
                         stats="min max median majority sum")

Note that the more complex statistics may require significantly more processing so performance can be impacted based on which statistics you choose to calculate.

Specifying Geometries

In addition to the basic usage above, rasterstats supports other mechanisms of specifying vector geometeries.

It integrates with other python objects that support the geo_interface (e.g. Fiona, Shapely, ArcPy, PyShp, GeoDjango):

>>> import fiona

>>> # an iterable of objects with geo_interface
>>> lyr = fiona.open('/path/to/vector.shp')
>>> features = (x for x in lyr if x['properties']['state'] == 'CT')
>>> raster_stats(features, '/path/to/elevation.tif')
...

>>> # a single object with a geo_interface
>>> lyr = fiona.open('/path/to/vector.shp')
>>> raster_stats(lyr.next(), '/path/to/elevation.tif')
...

Or by using with geometries in “Well-Known” formats:

>>> raster_stats('POINT(-124 42)', '/path/to/elevation.tif')
...

Feature Properties

By default, an __fid__ property is added to each feature’s results. None of the other feature attributes/proprties are copied over unless copy_properties is set to True:

>>> stats = raster_stats("tests/data/polygons.shp",
                         "tests/data/elevation.tif"
                         copy_properties=True)

>>> stats[0].has_key('name')  # name field from original shapefile is retained
True

Working with categorical rasters

You can treat rasters as categorical (i.e. raster values represent discrete classes) if you’re only interested in the counts of unique pixel values.

For example, you may have a raster vegetation dataset and want to summarize vegetation by polygon. Statistics such as mean, median, sum, etc. don’t make much sense in this context (What’s the sum of oak + grassland?).

The polygon below is comprised of 12 pixels of oak (raster value 32) and 78 pixels of grassland (raster value 33):

>>> raster_stats(lyr.next(), '/path/to/vegetation.tif', categorical=True)

>>> [{'__fid__': 1, 32: 12, 33: 78}]

Keep in mind that rasterstats just reports on the pixel values as keys; It is up to the programmer to associate the pixel values with their appropriate meaning (e.g. oak == 32) for reporting.

Issues

Find a bug? Report it via github issues by providing

  • a link to download the smallest possible raster and vector dataset necessary to reproduce the error

  • python code or command to reproduce the error

  • information on your environment: versions of python, gdal and numpy and system memory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

rasterstats-0.3.3.zip (16.6 kB view details)

Uploaded Source

rasterstats-0.3.3.tar.gz (9.7 kB view details)

Uploaded Source

File details

Details for the file rasterstats-0.3.3.zip.

File metadata

  • Download URL: rasterstats-0.3.3.zip
  • Upload date:
  • Size: 16.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for rasterstats-0.3.3.zip
Algorithm Hash digest
SHA256 964ae1c2b029db28a38df1c72bbc16a9cd475e77c1c1a8bbdb4730e3f41bbd4c
MD5 8ff5a5dddc3712fb027da8a050c72cb6
BLAKE2b-256 26fc18fcd6ea07661fe182dfeb5e959e8bdd0492ead2ef9f8e357eee56454302

See more details on using hashes here.

File details

Details for the file rasterstats-0.3.3.tar.gz.

File metadata

  • Download URL: rasterstats-0.3.3.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for rasterstats-0.3.3.tar.gz
Algorithm Hash digest
SHA256 ea1dde9e084929ae84d52e7a08a94b8a4a75354e24eabd13962b19fc701a77d7
MD5 5c6c00f6618a77f783ca1650e72f0a5b
BLAKE2b-256 9d797b836cc67276e3566ad90c55ec4bcdf0ea56b04ec757dc687adad346236f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page