Rats Processors
Project description
rats-processors
In you python project or Jupyter notebook, you can compose a pipeline as follows:
from typing import NamedTuple
import pandas as pd
from rats.apps import PipelineContainer
from rats.processors import CombinedPipeline, ExecutablePipeline, task, pipeline
class DataOut(NamedTuple):
data: pd.DataFrame
class MyContainer(PipelineContainer):
@task
def load_data(self) -> DataOut:
return DataOut(data=pd.read_csv("data.csv"))
@task
def train_model(self, data: pd.DataFrame):
return {"model": "trained"}
@pipeline
def my_pipeline(self) -> ExecutablePipeline:
load_data = self.load_data()
train_model = self.get(train_model)
return self.combine(
pipelines=[load_data, train_model],
dependencies=(train_model.inputs.data << load_data.outputs.data),
)
and run it like this:
container = MyContainer() # initialize your container
p = container.get("my_pipeline") # public method to get a service from a container
container.draw(p)
container.run(p)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file rats_processors-0.1.3.dev18-py3-none-any.whl
.
File metadata
- Download URL: rats_processors-0.1.3.dev18-py3-none-any.whl
- Upload date:
- Size: 82.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 027410e0d2408a01b2f91610526020f72e41b482b536e5db45e0a0b1c8247be0 |
|
MD5 | b9dc2c227198336bad4755293a419a43 |
|
BLAKE2b-256 | e781fcf2da542adb7bc487e667dc3c414eae63f62688eaab57752621df46e829 |