A perspective powered, user editable ray dashboard via ray serve
Project description
raydar
A perspective powered, user editable ray dashboard via ray serve.
Features
The raydar
module provides an actor which can process collections of ray object references on your behalf, and can serve a perspective dashboard in which to visualize that data.
from raydar import RayTaskTracker
task_tracker = RayTaskTracker()
Passing collections of object references to this actor's process
method causes those references to be tracked in an internal polars dataframe, as they finish running.
@ray.remote
def example_remote_function():
import time
import random
time.sleep(1)
if random.randint(1,100) > 90:
raise Exception("This task should sometimes fail!")
return True
refs = [example_remote_function.remote() for _ in range(100)]
task_tracker.process(refs)
This internal dataframe can be accessed via the .get_df()
method.
┌────────────────────────┬────────────────────────┬────────────────┬────────────────────────┬───┬───────────────────┬───────────────────┬───────────────────────┬───────────────┐
│ task_id ┆ user_defined_metadata ┆ attempt_number ┆ name ┆ … ┆ start_time_ms ┆ end_time_ms ┆ task_log_info ┆ error_message │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ f32 ┆ i64 ┆ str ┆ ┆ datetime[ms, ┆ datetime[ms, ┆ struct[6] ┆ str │
│ ┆ ┆ ┆ ┆ ┆ America/New_York] ┆ America/New_York] ┆ ┆ │
╞════════════════════════╪════════════════════════╪════════════════╪════════════════════════╪═══╪═══════════════════╪═══════════════════╪═══════════════════════╪═══════════════╡
│ 16310a0f0a45af5cffffff ┆ null ┆ 0 ┆ example_remote_functio ┆ … ┆ 2024-01-29 ┆ 2024-01-29 ┆ {"/tmp/ray/session_20 ┆ null │
│ ffffffffff… ┆ ┆ ┆ n ┆ ┆ 07:17:09.340 EST ┆ 07:17:12.115 EST ┆ 24-01-29_07… ┆ │
│ c2668a65bda616c1ffffff ┆ null ┆ 0 ┆ example_remote_functio ┆ … ┆ 2024-01-29 ┆ 2024-01-29 ┆ {"/tmp/ray/session_20 ┆ null │
│ ffffffffff… ┆ ┆ ┆ n ┆ ┆ 07:17:09.341 EST ┆ 07:17:12.107 EST ┆ 24-01-29_07… ┆ │
│ 32d950ec0ccf9d2affffff ┆ null ┆ 0 ┆ example_remote_functio ┆ … ┆ 2024-01-29 ┆ 2024-01-29 ┆ {"/tmp/ray/session_20 ┆ null │
│ ffffffffff… ┆ ┆ ┆ n ┆ ┆ 07:17:09.342 EST ┆ 07:17:12.115 EST ┆ 24-01-29_07… ┆ │
│ e0dc174c83599034ffffff ┆ null ┆ 0 ┆ example_remote_functio ┆ … ┆ 2024-01-29 ┆ 2024-01-29 ┆ {"/tmp/ray/session_20 ┆ null │
│ ffffffffff… ┆ ┆ ┆ n ┆ ┆ 07:17:09.343 EST ┆ 07:17:12.115 EST ┆ 24-01-29_07… ┆ │
│ f4402ec78d3a2607ffffff ┆ null ┆ 0 ┆ example_remote_functio ┆ … ┆ 2024-01-29 ┆ 2024-01-29 ┆ {"/tmp/ray/session_20 ┆ null │
│ ffffffffff… ┆ ┆ ┆ n ┆ ┆ 07:17:09.343 EST ┆ 07:17:12.115 EST ┆ 24-01-29_07… ┆ │
└────────────────────────┴────────────────────────┴────────────────┴────────────────────────┴───┴───────────────────┴───────────────────┴───────────────────────┴───────────────┘
Additionally, setting the enable_perspective_dashboard
flag to True
in the RayTaskTracker
's construction serves a perspective dashboard with live views of your completed references.
task_tracker = RayTaskTracker(enable_perspective_dashboard=True)
Recreating custom perspective views is supported.
From the developer console, save your workspace layout locally.
let workspace = document.getElementById('perspective-workspace');
// Save the current layout
workspace.save().then(config => {
// Convert the configuration object to a JSON string
let json = JSON.stringify(config);
// Create a Blob object from the JSON string
let blob = new Blob([json], {type: "application/json"});
// Create a download link
let link = document.createElement('a');
link.href = URL.createObjectURL(blob);
link.download = 'workspace.json';
// Append the link to the document body and click it to start the download
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
});
Then, move this json file to js/src/layouts/default.json
.
The data available to you includes much of what Ray's GCS tracks, and also allows for user defined metadata per task.
Specifically, tracked fields include:
task_id
user_defined_metadata
attempt_number
name
state
job_id
actor_id
type
func_or_class_name
parent_task_id
node_id
worker_id
error_type
language
required_resources
runtime_env_info
placement_group_id
events
profiling_data
creation_time_ms
start_time_ms
end_time_ms
task_log_info
error_message
Custom data sources and update logic are also suported
The proxy server helpd by the RayTaskTracker
is exposed via the .proxy_server()
property, meaning we can create new tables as follows:
task_tracker = RayTaskTracker(enable_perspective_dashboard=True)
proxy_server = task_tracker.proxy_server()
proxy_server.remote(
"new",
"metrics_table",
{
"node_id": "str",
"metric_name": "str",
"value": "float",
"timestamp": "datetime",
},
)
If a user were to then update this table with data coming from, for example, a pytorch model training loop with metrics:
def my_model_training_loop()
for epoch in range(num_epochs):
# ... my training code here ...
data = dict(
node_id=ray.get_runtime_context().get_node_id(),
metric_name="loss",
value=loss.item(),
timestamp=time.time(),
)
proxy_server.remote("update", "metrics_table", [data])
Then they can expose a live view at per-node loss metrics across our model training process:
Installation
raydar
can be installed via pip or conda, the two primary package managers for the Python ecosystem.
To install raydar
via pip, run this command in your terminal:
pip install raydar
To install raydar
via conda, run this command in your terminal:
conda install raydar -c conda-forge
License
This software is licensed under the Apache 2.0 license. See the LICENSE file for details.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file raydar-0.2.0.tar.gz
.
File metadata
- Download URL: raydar-0.2.0.tar.gz
- Upload date:
- Size: 2.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eb554743e7791afc5029ca1041208f6ee0d902909585eceadd95f907fa151d49 |
|
MD5 | 30096a64077567f6297fb39f2fa316cb |
|
BLAKE2b-256 | db0fbfc3b902f0329534faa368a8c8804ac4bcccc1119089ba4cc83454b6af8f |
File details
Details for the file raydar-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: raydar-0.2.0-py3-none-any.whl
- Upload date:
- Size: 2.7 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 934f21b99bea54f9b7855e7908584b2369920e3e880c09296d7b49dec3a4dab4 |
|
MD5 | 523a127c2369666ca8da5d995a9a93ae |
|
BLAKE2b-256 | 00d7f1369d1a97cbcae74ddac8572b0f6db333479e9078534ddaf75fd5496c77 |