Skip to main content

A perspective powered, user editable ray dashboard via ray serve

Project description

raydar

A perspective powered, user editable ray dashboard via ray serve.

Build Status PyPI Version License Python Versions


Features

The raydar module provides an actor which can process collections of ray object references on your behalf, and can serve a perspective dashboard in which to visualize that data.

from raydar import RayTaskTracker
task_tracker = RayTaskTracker()

Passing collections of object references to this actor's process method causes those references to be tracked in an internal polars dataframe, as they finish running.

@ray.remote
def example_remote_function():
    import time
    import random
    time.sleep(1)
    if random.randint(1,100) > 90:
        raise Exception("This task should sometimes fail!")
    return True

refs = [example_remote_function.remote() for _ in range(100)]
task_tracker.process(refs)

This internal dataframe can be accessed via the .get_df() method.

task_id user_defined_metadata attempt_number name ... start_time_ms end_time_ms task_log_info error_message
str f32 i64 str datetime[ms,America/New_York] datetime[ms,America/New_York] struct[6] str
16310a0f0a... null 0 example_remote_function ... 2024-01-29 07:17:09.340 EST 2024-01-29 07:17:12.115 EST {"/tmp/ray/session_2024-01-29_07... null
c2668a65bd... null 0 example_remote_function ... 2024-01-29 07:17:09.341 EST 2024-01-29 07:17:12.107 EST {"/tmp/ray/session_2024-01-29_07... null
32d950ec0c... null 0 example_remote_function ... 2024-01-29 07:17:09.342 EST 2024-01-29 07:17:12.115 EST {"/tmp/ray/session_2024-01-29_07... null
e0dc174c83... null 0 example_remote_function ... 2024-01-29 07:17:09.343 EST 2024-01-29 07:17:12.115 EST {"/tmp/ray/session_2024-01-29_07... null
f4402ec78d... null 0 example_remote_function ... 2024-01-29 07:17:09.343 EST 2024-01-29 07:17:12.115 EST {"/tmp/ray/session_2024-01-29_07... null

Additionally, setting the enable_perspective_dashboard flag to True in the RayTaskTracker's construction serves a perspective dashboard with live views of your completed references.

task_tracker = RayTaskTracker(enable_perspective_dashboard=True)

Example

Create/Store Custom Views

From the developer console, save your workspace layout locally.

let workspace = document.getElementById('perspective-workspace');

// Save the current layout
workspace.save().then(config => {
    // Convert the configuration object to a JSON string
    let json = JSON.stringify(config);

    // Create a Blob object from the JSON string
    let blob = new Blob([json], {type: "application/json"});

    // Create a download link
    let link = document.createElement('a');
    link.href = URL.createObjectURL(blob);
    link.download = 'workspace.json';

    // Append the link to the document body and click it to start the download
    document.body.appendChild(link);
    link.click();
    document.body.removeChild(link);
});

Then, move this json file to js/src/layouts/default.json.

Example

Expose Ray GCS Information

The data available to you includes much of what Ray's GCS tracks, and also allows for user defined metadata per task.

Specifically, tracked fields include:

  • task_id
  • user_defined_metadata
  • attempt_number
  • name
  • state
  • job_id
  • actor_id
  • type
  • func_or_class_name
  • parent_task_id
  • node_id
  • worker_id
  • error_type
  • language
  • required_resources
  • runtime_env_info
  • placement_group_id
  • events
  • profiling_data
  • creation_time_ms
  • start_time_ms
  • end_time_ms
  • task_log_info
  • error_message

Example

Custom Sources / Update Logic

The proxy server helpd by the RayTaskTracker is exposed via the .proxy_server() property, meaning we can create new tables as follows:

task_tracker = RayTaskTracker(enable_perspective_dashboard=True)
proxy_server = task_tracker.proxy_server()
proxy_server.remote(
    "new",
    "metrics_table",
    {
        "node_id": "str",
        "metric_name": "str",
        "value": "float",
        "timestamp": "datetime",
    },
)

Example: Live Per-Node Training Loss Metrics

If a user were to then update this table with data coming from, for example, a pytorch model training loop with metrics:

def my_model_training_loop()

	for epoch in range(num_epochs):
        # ... my training code here ...

		data = dict(
			node_id=ray.get_runtime_context().get_node_id(),
			metric_name="loss",
			value=loss.item(),
			timestamp=time.time(),
		)
		proxy_server.remote("update", "metrics_table", [data])

Then they can expose a live view at per-node loss metrics across our model training process:

Example

Installation

raydar can be installed via pip or conda, the two primary package managers for the Python ecosystem.

To install raydar via pip, run this command in your terminal:

pip install raydar

To install raydar via conda, run this command in your terminal:

conda install raydar -c conda-forge

License

This software is licensed under the Apache 2.0 license. See the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

raydar-0.2.2.tar.gz (2.7 MB view details)

Uploaded Source

Built Distribution

raydar-0.2.2-py3-none-any.whl (2.7 MB view details)

Uploaded Python 3

File details

Details for the file raydar-0.2.2.tar.gz.

File metadata

  • Download URL: raydar-0.2.2.tar.gz
  • Upload date:
  • Size: 2.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for raydar-0.2.2.tar.gz
Algorithm Hash digest
SHA256 2808eee4810f4fcd2bc0f9fcf3c4917e2c97022dd99859f937934311c6aa5824
MD5 5ca1140ef54285a8a3e7e852b28ae1bf
BLAKE2b-256 36fbb02466c97df846d4c31ebcf05c80d9b5b849929b37c5e57b7372aa7fe677

See more details on using hashes here.

File details

Details for the file raydar-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: raydar-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for raydar-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0fc439b1f23cf98c11bd6c994acd2bdfd2b533dd379bb2f160dfc1c2c83af6dd
MD5 9f0b21c618239b7058d68b970b3e2537
BLAKE2b-256 a62751b33d3bb3a869bc8b43ffcb896fa52818fc6b166aa96db5be1f1d9cb527

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page