Skip to main content

provides over 2264 datasets as pandas dataframe from various R packages

Project description

pyRdatasets

pyRdatasets is a collection of 2264 datasets taken from https://github.com/vincentarelbundock/Rdatasets. The datasets were extracted from various R packages and stored as gzip packed pickle files in pandas DataFrame structure. A description to each dataset can be found here: http://vincentarelbundock.github.io/Rdatasets/datasets.html

All 2264 data records are already included in the package (no internet connection necessary), which has a size around 25 Mb.

Installation

pip install rdatasets

Usage

>>> from rdatasets import data
>>> dataset = data("iris")
>>> dataset
     Sepal.Length  Sepal.Width  Petal.Length  Petal.Width    Species
0             5.1          3.5           1.4          0.2     setosa
1             4.9          3.0           1.4          0.2     setosa
2             4.7          3.2           1.3          0.2     setosa
3             4.6          3.1           1.5          0.2     setosa
4             5.0          3.6           1.4          0.2     setosa
..            ...          ...           ...          ...        ...
145           6.7          3.0           5.2          2.3  virginica
146           6.3          2.5           5.0          1.9  virginica
147           6.5          3.0           5.2          2.0  virginica
148           6.2          3.4           5.4          2.3  virginica
149           5.9          3.0           5.1          1.8  virginica

[150 rows x 5 columns]
>>> data("forecast", "co2")
Could not read forecast/co2
Which item did you mean: ['gas', 'gold', 'taylor', 'wineind', 'woolyrnq']?
>>> data("forecast", "gas")
            time  value
0    1956.000000   1709
1    1956.083333   1646
2    1956.166667   1794
3    1956.250000   1878
4    1956.333333   2173
..           ...    ...
471  1995.250000  49013
472  1995.333333  56624
473  1995.416667  61739
474  1995.500000  66600
475  1995.583333  60054

[476 rows x 2 columns]

The dataset description can be printed by:

from rdatasets import data, descr
print(descr("iris"))

A summary of all datasets is available as DataFrame object:

from rdatasets import summary
summary()

Thanks to

The archive of datasets distributed with R: of https://github.com/vincentarelbundock/Rdatasets

Pre-commit-config

Installation

$ pip install pre-commit

Using homebrew:

$ brew install pre-commit
$ pre-commit --version
pre-commit 2.10.0

Install the git hook scripts

$ pre-commit install

Run against all the files

pre-commit run --all-files
pre-commit run --show-diff-on-failure --color=always --all-files

Update package rev in pre-commit yaml

pre-commit autoupdate
pre-commit run --show-diff-on-failure --color=always --all-files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rdatasets-0.2.1.tar.gz (49.1 MB view details)

Uploaded Source

Built Distribution

rdatasets-0.2.1-py3-none-any.whl (49.5 MB view details)

Uploaded Python 3

File details

Details for the file rdatasets-0.2.1.tar.gz.

File metadata

  • Download URL: rdatasets-0.2.1.tar.gz
  • Upload date:
  • Size: 49.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for rdatasets-0.2.1.tar.gz
Algorithm Hash digest
SHA256 b8193daff8fcfb94a3d0502a36291b970a460fae8f1ba1b1eb9e18e1fa0dbf71
MD5 81b9e763523db6bc0cf7f59a9c36966f
BLAKE2b-256 47d0b9c059ccbdd2e076aa73df294bff2170fa162f79c0625d8c4dcf3b5e2ede

See more details on using hashes here.

File details

Details for the file rdatasets-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: rdatasets-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 49.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for rdatasets-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 84a09d4e5be7a26e6a018bb26714493db3f959d8c2e1eaf1e6b597bffe9ac263
MD5 ef9dc6e528fbe4dc2a7095dafb2b9810
BLAKE2b-256 cbf80c61861c6af0f6c7c3b1eca8d1ad3a6ae43da9e8455c7b583447be752a39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page