Skip to main content

provides over 2264 datasets as pandas dataframe from various R packages

Reason this release was yanked:

Broken wheel

Project description

pyRdatasets

PyPi Version

pyRdatasets is a collection of 2264 datasets taken from https://github.com/vincentarelbundock/Rdatasets. The datasets were extracted from various R packages and stored as gzip packed pickle files in pandas DataFrame structure. A description to each dataset can be found here: http://vincentarelbundock.github.io/Rdatasets/datasets.html

All 2264 data records are already included in the package (no internet connection necessary), which has a size around 25 Mb.

Installation

pip install rdatasets

Usage

>>> import rdatasets
>>> dataset = rdatasets.data("iris")
>>> dataset
     Sepal.Length  Sepal.Width  Petal.Length  Petal.Width    Species
0             5.1          3.5           1.4          0.2     setosa
1             4.9          3.0           1.4          0.2     setosa
2             4.7          3.2           1.3          0.2     setosa
3             4.6          3.1           1.5          0.2     setosa
4             5.0          3.6           1.4          0.2     setosa
..            ...          ...           ...          ...        ...
145           6.7          3.0           5.2          2.3  virginica
146           6.3          2.5           5.0          1.9  virginica
147           6.5          3.0           5.2          2.0  virginica
148           6.2          3.4           5.4          2.3  virginica
149           5.9          3.0           5.1          1.8  virginica

[150 rows x 5 columns]
>>> rdatasets.data("forecast", "co2")
Could not read forecast/co2
Which item did you mean: ['gas', 'gold', 'taylor', 'wineind', 'woolyrnq']?
>>> rdatasets.data("forecast", "gas")
            time  value
0    1956.000000   1709
1    1956.083333   1646
2    1956.166667   1794
3    1956.250000   1878
4    1956.333333   2173
..           ...    ...
471  1995.250000  49013
472  1995.333333  56624
473  1995.416667  61739
474  1995.500000  66600
475  1995.583333  60054

[476 rows x 2 columns]

The dataset description can be printed by:

import rdatasets
print(rdatasets.descr("iris"))

A summary of all datasets is available as DataFrame object:

import rdatasets
rdatasets.summary()

Thanks to

The archive of datasets distributed with R: of https://github.com/vincentarelbundock/Rdatasets

Pre-commit-config

Installation

$ pip install pre-commit

Using homebrew:

$ brew install pre-commit
$ pre-commit --version
pre-commit 2.10.0

Install the git hook scripts

$ pre-commit install

Run against all the files

pre-commit run --all-files
pre-commit run --show-diff-on-failure --color=always --all-files

Update package rev in pre-commit yaml

pre-commit autoupdate
pre-commit run --show-diff-on-failure --color=always --all-files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rdatasets-0.2.6.tar.gz (49.1 MB view details)

Uploaded Source

Built Distribution

rdatasets-0.2.6-py3-none-any.whl (27.2 kB view details)

Uploaded Python 3

File details

Details for the file rdatasets-0.2.6.tar.gz.

File metadata

  • Download URL: rdatasets-0.2.6.tar.gz
  • Upload date:
  • Size: 49.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for rdatasets-0.2.6.tar.gz
Algorithm Hash digest
SHA256 894805880247b472e38b4118681c791dcf3e92bd2ffee20a485fd5c0e56db575
MD5 26334644e30517031e360b87b36dd562
BLAKE2b-256 1b5229f8d33433c418842552aaf635e4e3109f57f43b8d2f62260742f198a052

See more details on using hashes here.

File details

Details for the file rdatasets-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: rdatasets-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 27.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for rdatasets-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 76d80906d5b13e54c21f0b894ac7a2ef6c9932d482a5ef78f879cb30c6cea521
MD5 3c7a46f19db0e34b6ae19af7d40a1f13
BLAKE2b-256 0ca421112a74b0084cbc9185dd637e7a553eca5d48c73608872eaff89a5eb865

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page