Skip to main content

Reaction-network is a Python package for predicting likely inorganic chemical reaction pathways using graph theory.

Project description

Reaction Network

Pytest Status Code Coverage

Reaction network (rxn-network) is a Python package for predicting chemical reaction pathways in solid-state materials synthesis using combinatorial and graph-theorteical methods.

Installation directions

The rxn-network package has several dependencies, most of which can be installed through PyPI. However, graph-tool must be installed through a more customized method; please see https://graph-tool.skewed.de/ for more details. We recommend the following installation procedure which creates a new conda environment with Python 3.9, activates it, and then installs graph-tool through conda-forge.

conda create -n gt python=3.9
conda activate gt
conda install -c conda-forge graph-tool

To install an editable version of the rxn-network code, simply download (clone) the code from this repository, navigate to its directory, and then run the following command to install the requirements:

pip install -r requirements.txt
pip install -e .

Tutorial notebooks

The notebooks folder contains two (2) demonstration notebooks:

  • enumerators.ipynb: how to enumerate reactions from a set of entries; running enumerators using Fireworks
  • network.ipynb: how to build reaction networks from a list of enumerators and entries; how to perform pathfinding to recommend balanced reaction pathways; running reaction network analysis using Fireworks

Citation

If you use this code or Python package in your work, please consider citing the following paper:

McDermott, M. J., Dwaraknath, S. S., and Persson, K. A. (2021). A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23339-x

Acknowledgements

This work was supported as part of GENESIS: A Next Generation Synthesis Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award Number DE-SC0019212.

Learn more about the GENESIS EFRC here: https://www.stonybrook.edu/genesis/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

reaction-network-4.2.0.tar.gz (7.2 MB view details)

Uploaded Source

File details

Details for the file reaction-network-4.2.0.tar.gz.

File metadata

  • Download URL: reaction-network-4.2.0.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for reaction-network-4.2.0.tar.gz
Algorithm Hash digest
SHA256 dffa0439db2c3b4166b885f4b6a064fcf1de18f044445691f82801daccbec9c8
MD5 711df1df680abe0abe61ac8607b7e1dc
BLAKE2b-256 02e04364590c6ff601e956ca9268df8cadfd0f391bfb8ec44eb40f1175509b59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page