Reactive Dataflow Graphs
Project description
Reactive-Dataflow
Reactive Processing Graphs for Python.
Getting Started
Installation
pip install reactivedataflow
The key dependencies for this project include rx
and networkx
. These are outlined in the pyproject.toml
dependencies section.
Usage
import reactivex as rx
from reactivedataflow import (
GraphAssembler,
GraphModel,
VerbNodeModel,
InputNodeModel,
InputModel,
verb,
InputPort,
ConfigPort
)
#
# Define a processing verb
#
@verb(
name="print",
ports=[
InputPort(name="values", required=True, parameter="val"),
ConfigPort(name="prefix", required=False, parameter="prefix"),
]
)
def print_verb(val, prefix=""):
return f"{prefix}{val}"
#
# Define a simple graph
#
assembler = GraphAssembler()
assembler.load(
GraphModel(
inputs=[
# This is an input stream of values we'll define on build
InputNodeModel(id="input_values")
],
nodes=[
# Here we define the processing nodes
VerbNodeModel(
id="verb1",
verb="print",
config={"prefix": "emitted: "},
input={
"values": InputModel(node="input_values")
}
),
],
),
)
#
# Build the graph and bind input streams
#
graph = assembler.build(
inputs={
"input_values": rx.of([1, 2, 3])
}
)
#
# Watch graph outputs
#
graph.output("verb1").subscribe(print)
# Output:
# emitted: 1
# emitted: 2
# emitted: 3
Developing
This project uses poetry
for dependency management. You should have a recent Python version (e.g. 3.10+) and Poetry 1.8+ installed on your system.
# Install dependencies
poetry install
# Run tests
poetry run poe test
# Run static checks
poetry run poe check
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
reactivedataflow-0.1.9.tar.gz
(17.3 kB
view details)
Built Distribution
File details
Details for the file reactivedataflow-0.1.9.tar.gz
.
File metadata
- Download URL: reactivedataflow-0.1.9.tar.gz
- Upload date:
- Size: 17.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ad7e2127d3cfdd3befd32d127d1258a928d5bb009a475912adceed4099d8e5ae |
|
MD5 | 317c10bc2ffb371cccbf1b925e0aea32 |
|
BLAKE2b-256 | 5a3a2436f66d4f8d423a5bf4ce5542c307b0f518c18265dd5550b20958a05630 |
File details
Details for the file reactivedataflow-0.1.9-py3-none-any.whl
.
File metadata
- Download URL: reactivedataflow-0.1.9-py3-none-any.whl
- Upload date:
- Size: 27.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 685ebae82d59410c220f8045168a680dfaca906b3bfa25f69022996190e13b9c |
|
MD5 | 7dbcbd19687f92f1fb30b84d2c81e6a7 |
|
BLAKE2b-256 | 3b9a8581bd678c8f518b857406ccd633365972957d0a3f3a878cfa93dd15019b |