Openstax response validator server
Project description
response_validation_app
Implements a simple unsupervised method for classifying student short to medium sized responses to questions.
Installation
This was developed in Python 3.6. It may work fine with Python 2.x but I have not tested it.
After cloning the repository, you can install the required libraries using pip:
pip install -r requirements.txt
You will also need to download the corpora for the NLTK package. This, unfortunately, must be done separately can cannot be automated with the requirements.txt file. Running the following commands:
python -m nltk.downloader snowball_data words stopwords punkt
or as another simpler command:
python -m nltk.downloader all
should accomplish this.
Usage
To run the app on a local machine, simple type:
python app.py
This will start the app at the default address and port (http://127.0.0.1:5000/).
The current Procfile is configured for easy deployment to Heroku.
The main route for the app is /validate, which accepts a plaintext response (response) that will be checked. It can also accept a number of optional arguments:
- uid (e.g., '1000@1'): This is the uid for the question pertaining to the response. The uid is used to compute domain-specific and module-specific vocabulary to aid in the classification process.
- remove_stopwords (True or False): Whether or not stopwords (e.g., 'the', 'and', etc) will be removed from the response. This is generally advised since these words carry little predictive value.
- tag_numeric (True or False): Whether numerical values will be tagged (e.g., 123.7 is tagged with a special 'numeric_type_float' identifier). While there are certainly responses for which this would be helpful, a large amount of student garbage consists of random number pressing which limits the utility of this option.
- spelling_correction (True or False): Whether the app will attempt to correct misspellings. This is done by identifying unknown words in the response and seeing if a closely related known word can be substituted. Currently, the app only attempts spelling correction on words of at least 5 characters in length and only considers candidate words that are within an edit distance of 2 from the misspelled word.
- remove_nonwords (True or False): Words that are not recognized (after possibly attempting spelling correction) are flagged with a special 'nonsense_word' tag. This is done primarily to combat keyboard mashes (e.g., 'asdfljasdfk') that make a large percentage of invalid student responses.
Once the app is running, you can send requests using curl, requests, etc. Here is an example using Python's requests library:
Here an example of how to call things using the Python requests library (assuming that the app is running on the default local port):
imort json
import requests
params = {'response': 'this is my answer to the question alkjsdfl',
'uid': '100@2',
'remove_stopwords': True,
'tag_numeric=True': False,
'spelling_correction': True,
'remove_nonwords': True}
r = requests.get('http://127.0.0.1:5000/validate', params=params)
print(json.dumps(r.json(), indent=2))
{
"bad_word_count": 1,
"common_word_count": 2,
"computation_time": 0.06826448440551758,
"domain_word_count": 0,
"inner_product": -1.6,
"innovation_word_count": 0,
"processed_response": "answer question nonsense_word",
"remove_nonwords": "True",
"remove_stopwords": "True",
"response": "this is my answer to the question alkjsdfl",
"spelling_correction": "True",
"tag_numeric": false,
"uid": "100@2",
"uid_found": false,
"valid": false
}
TODO:
While the app is fully functional, there are some other things that will need to be addressed:
- Currently there is no security for this app (anything can call it). I am not sure how this is usually handled in Tutor but it should not be too difficult to add an api key or similar security measures.
- The Procfile will need to be changed a bit depending on how and where we wish to deploy
- By far the largest element of the processing time for a response is devoted to spelling correction. While this does provide a very strong performance improvement for short responses, we may wish to automatically disable this in the case where the response is too long (larger than a paragraph).
- Depending on UX, we may want to return more granular information about the response rather than a simple valid/non-valid label. We can modify this easily enough as the need arises.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file response-validator-2.0.0.tar.gz
.
File metadata
- Download URL: response-validator-2.0.0.tar.gz
- Upload date:
- Size: 27.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e9fb82d14249c0f0cce4a87f61536756168307354854614c5db3b7966975b2a3 |
|
MD5 | 6825817806504255c9f400559793cb35 |
|
BLAKE2b-256 | c8bc6c8b4008b7dfcf3bbb15b4c259faaff0454f024b98d3efdd300eb7ea88c6 |
File details
Details for the file response_validator-2.0.0-py2.py3-none-any.whl
.
File metadata
- Download URL: response_validator-2.0.0-py2.py3-none-any.whl
- Upload date:
- Size: 7.0 MB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc793b01499939960fb169413f32cd688a4281d9373266dc84e9944799279ef4 |
|
MD5 | c0142c6639dabd72a2504436aac63e43 |
|
BLAKE2b-256 | 5a717ab1d1e32dab3487d31181e2ac37f15db4ea6c9b92753260e3f4a0094b4f |