Skip to main content

A set of utilities for generating quality scores for MediaWiki revisions

Project description

Revision Scoring

A generic, machine learning-based revision scoring system designed to be used to automatically differentiate damage from productive contributory behavior on Wikipedia.

Examples

Scoring models:

>>> from mw.api import Session
>>>
>>> from revscoring.extractors import APIExtractor
>>> from revscoring.languages import english
>>> from revscoring.scorers import MLScorerModel
>>>
>>> api_session = Session("https://en.wikipedia.org/w/api.php")
Sending requests with default User-Agent.  Set 'user_agent' on api.Session to quiet this message.
>>> extractor = APIExtractor(api_session, english)
>>>
>>> filename = "models/reverts.halfak_mix.trained.model"
>>> model = MLScorerModel.load(open(filename, 'rb'))
>>>
>>> rev_ids = [105, 642215410, 638307884]
>>> feature_values = [extractor.extract(id, model.features) for id in rev_ids]

>>> scores = model.score(feature_values, probabilities=True)
>>> for rev_id, score in zip(rev_ids, scores):
...     print("{0}: {1}".format(rev_id, score))
...
105: {'probabilities': array([ 0.96441465,  0.03558535]), 'prediction': False}
642215410: {'probabilities': array([ 0.75884553,  0.24115447]), 'prediction': True}
638307884: {'probabilities': array([ 0.98441738,  0.01558262]), 'prediction': False}

Feature extraction:

>>> from mw.api import Session
>>>
>>> from revscoring.extractors import APIExtractor
>>> from revscoring.features import diff, parent_revision, revision, user
>>>
>>> api_extractor = APIExtractor(Session("https://en.wikipedia.org/w/api.php"))
Sending requests with default User-Agent.  Set 'user_agent' on api.Session to quiet this message.
>>>
>>> features = [revision.day_of_week,
...             revision.hour_of_day,
...             revision.has_custom_comment,
...             parent_revision.bytes_changed,
...             diff.chars_added,
...             user.age,
...             user.is_anon,
...             user.is_bot]
>>>
>>> values = api_extractor.extract(
...     624577024,
...     features
... )
>>> for feature, value in zip(features, values):
...     print("{0}: {1}".format(feature, value))
...
<revision.day_of_week>: 6
<revision.hour_of_day>: 19
<revision.has_custom_comment>: True
<(revision.bytes - parent_revision.bytes_changed)>: 3
<diff.chars_added>: 8
<user.age>: 71821407
<user.is_anon>: False
<user.is_bot>: False

Installation

In order to use this, you need to install a few packages first:

pip install revscoring

You’ll need to download NLTK data in order to make use of language features.

>>> python
>>> import nltk
>>> nltk.download()
>>> Downloader> d
>>> Identifier> wordnet
>>> Downloader> d
>>> Identifier> omw
>>> Downloader> d
>>> Identifier> stopwords
>>> Downloader> q
>>> exit()

You might need to install some other dependencies depending on your operating system. These are for scipy and numpy.

Linux Mint 17.1:

  1. sudo apt-get install g++ gfortran liblapack-dev python3-dev myspell-pt myspell-fa myspell-en-au myspell-en-gb myspell-en-us myspell-en-za myspell-fr

Ubuntu 14.04:

  1. sudo apt-get install g++ gfortran liblapack-dev libopenblas-dev python3-dev myspell-pt myspell-fa myspell-en-au myspell-en-gb myspell-en-us myspell-en-za myspell-fr

Authors

Aaron Halfaker:
  • http://halfaker.info

Helder:
  • https://github.com/he7d3r

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

revscoring-0.3.0.zip (69.4 kB view details)

Uploaded Source

revscoring-0.3.0.tar.gz (42.3 kB view details)

Uploaded Source

File details

Details for the file revscoring-0.3.0.zip.

File metadata

  • Download URL: revscoring-0.3.0.zip
  • Upload date:
  • Size: 69.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for revscoring-0.3.0.zip
Algorithm Hash digest
SHA256 72a0dbb223d07960c83d167d7f3c1bc1c725dde67e4a785231b6fe83385b9f19
MD5 e4e6f430d70398e8742c996e6df7c411
BLAKE2b-256 8e8a6ac9ef16301d557d9b79ebcf0e1abfc25974f9354e08f58b5dbe6fd91e16

See more details on using hashes here.

File details

Details for the file revscoring-0.3.0.tar.gz.

File metadata

  • Download URL: revscoring-0.3.0.tar.gz
  • Upload date:
  • Size: 42.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for revscoring-0.3.0.tar.gz
Algorithm Hash digest
SHA256 4e7a14a623e25ef96fe5b58d9a7debabd119b016b69d4017f1dcc4f6d3c74694
MD5 ba5d9f6128fc7b260b39f618d91aaf3f
BLAKE2b-256 1e552f70649ad87ad0d59547c371c2eb34e509583c54c33f5bf2be18e2d10687

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page