Skip to main content

A set of utilities for generating quality scores for MediaWiki revisions

Project description

|travis|_ |codecov|_

Revision Scoring
================
A generic, machine learning-based revision scoring system designed to be used
to automatically differentiate damage from productive contributory behavior on
Wikipedia.

Example
========

Using a scorer_model to score a revision::

>>> import mwapi
>>> from revscoring import ScorerModel
>>> from revscoring.extractors.api.extractor import Extractor
>>>
>>> with open("models/enwiki.damaging.linear_svc.model") as f:
... scorer_model = ScorerModel.load(f)
...
>>> extractor = Extractor(mwapi.Session(host="https://en.wikipedia.org",
... user_agent="revscoring demo"))
>>>
>>> feature_values = list(extractor.extract(123456789, scorer_model.features))
>>>
>>> print(scorer_model.score(feature_values))
{'prediction': True, 'probability': {False: 0.4694409344514984, True: 0.5305590655485017}}


Installation
============
The easiest way to install `revscoring` is via the Python package installer
(pip).

``pip install revscoring``

You may find that some of `revscorings` dependencies fail to compile (namely
`scipy`, `numpy` and `sklearn`). In that case, you'll need to install some
dependencies in your operating system.

Ubuntu & Debian:
Run ``sudo apt-get install python3-dev g++ gfortran liblapack-dev libopenblas-dev``
Windows:
'TODO'
MacOS:
Using Homebrew and pip, installing `revscoring` and `enchant` can be accomplished
as follows::

brew install aspell --with-all-languages
brew install enchant
pip install --no-binary pyenchant revscoring
Languages can be added to `aspell`::

cd /tmp
wget http://ftp.gnu.org/gnu/aspell/dict/pt/aspell-pt-0.50-2.tar.bz2
bzip2 -dc aspell-pt-0.50-2.tar.bz2 | tar xvf -
cd aspell-pt-0.50-2
./configure
make
sudo make install
Caveats:
* The differences between the `aspell` and `myspell` dictionaries can cause
some of the tests to fail


Finally, in order to make use of language features, you'll need to download
some NLTK data. The following command will get the necessary corpus.

``python -m nltk.downloader stopwords``

You'll also need to install `enchant <https://en.wikipedia.org/wiki/Enchant_(software)>`_ compatible
dictionaries of the languages you'd like to use. We recommend the following:

* ``languages.arabic``: aspell-ar
* ``languages.czech``: myspell-cs
* ``languages.dutch``: myspell-nl
* ``languages.english``: myspell-en-us myspell-en-gb myspell-en-au
* ``languages.estonian``: myspell-et
* ``languages.finnish``: voikko-fi
* ``languages.french``: myspell-fr
* ``languages.german``: myspell-de-at myspell-de-ch myspell-de-de
* ``languages.hebrew``: myspell-he
* ``languages.hungarian``: myspell-hu
* ``languages.indonesian``: aspell-id
* ``languages.italian``: myspell-it
* ``languages.norwegian``: myspell-nb
* ``languages.persian``: myspell-fa
* ``languages.polish``: aspell-pl
* ``languages.portuguese``: myspell-pt
* ``languages.spanish``: myspell-es
* ``languages.swedish``: aspell-sv
* ``languages.tamil``: aspell-ta
* ``languages.russian``: myspell-ru
* ``languages.ukrainian``: myspell-uk
* ``languages.vietnamese``: hunspell-vi

Authors
=======
Aaron Halfaker:
* `http://halfaker.info`
Helder:
* `https://github.com/he7d3r`
Adam Roses Wight:
* `https://mediawiki.org/wiki/User:Adamw`
Amir Sarabadani:
* `https://github.com/Ladsgroup`

.. |travis| image:: https://api.travis-ci.org/wiki-ai/revscoring.png
.. _travis: https://travis-ci.org/wiki-ai/revscoring
.. |codecov| image:: https://codecov.io/github/wiki-ai/revscoring/revscoring.svg
.. _codecov: https://codecov.io/github/wiki-ai/revscoring

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

revscoring-1.3.7.tar.gz (171.7 kB view details)

Uploaded Source

Built Distribution

revscoring-1.3.7-py2.py3-none-any.whl (376.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file revscoring-1.3.7.tar.gz.

File metadata

  • Download URL: revscoring-1.3.7.tar.gz
  • Upload date:
  • Size: 171.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for revscoring-1.3.7.tar.gz
Algorithm Hash digest
SHA256 cdbfcfebf144db316a1d3bb5aa58dd9c3bc1bdf86b262a8ae7079972d9cc4f01
MD5 39dbfaae515b29228acca36f3f5622b6
BLAKE2b-256 eea18bf949c5e87dc26cbb72fdcfd02cdacb5cb561cec84e164ee6494ea48f94

See more details on using hashes here.

File details

Details for the file revscoring-1.3.7-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for revscoring-1.3.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 70564a54daff8510e5f75c76a4af5dafcf85951ac7b39c2e8563e5e378aee4b9
MD5 aa8bef57e0dfa564d4d211d08c044da9
BLAKE2b-256 6c848442ed93e20a4ec96210737db2b540edf064309e8f4dead110527b6d900f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page