No project description provided
Project description
Rhasspy Raven Wakeword System
Wakeword detector based on the Snips Personal Wake Word Detector.
Dependencies
- Python 3.7
python-speech-features
for MFCC computationrhasspy-silence
for silence detection
Installation
$ git clone https://github.com/rhasspy/rhasspy-wake-raven.git
$ cd rhasspy-wake-raven
$ ./configure
$ make
$ make install
Recording Templates
Record at least 3 WAV templates with your wake word:
$ arecord -r 16000 -f S16_LE -c 1 -t raw | \
bin/rhasspy-wake-raven --record 'my-wake-word-{n:02d}.wav' my-wake-word/
Follow the prompts and speak your wake word. When you've recorded at least 3 examples, hit CTRL+C to exit. Your WAV templates will have silence automatically trimmed, and will be saved in the directory my-wake-word/
.
If you want to manually record WAV templates, trim silence off the front and back and make sure to export them as 16-bit 16Khz mono WAV files.
Running
After recording your WAV templates in a directory, run:
$ arecord -r 16000 -f S16_LE -c 1 -t raw | \
bin/rhasspy-wake-raven <WAV_DIR> ...
where <WAV_DIR>
contains the WAV templates. You may also specify individual WAV files.
Add --debug
to the command line to get more information about the underlying computation on each audio frame.
Example
Using the example files for "okay rhasspy":
$ arecord -r 16000 -f S16_LE -c 1 -t raw | \
bin/rhasspy-wake-raven etc/okay-rhasspy/
This requires at least 1 of the 3 WAV templates to match before output like this is printed:
{"keyword": "etc/okay-rhasspy/okay-rhasspy-00.wav", "detect_seconds": 2.7488508224487305, "detect_timestamp": 1594996988.638912, "raven": {"probability": 0.45637207995699963, "distance": 0.25849045215799454, "probability_threshold": [0.45, 0.55], "distance_threshold": 0.22, "tick": 1, "matches": 2}}
Use --minimum-matches
to change how many templates must match for a detection to occur. Adjust the sensitivity with --probability-threshold <LOWER> <UPPER>
which sets the lower/upper bounds of the detection probability (default is 0.45 0.55
).
Output
Raven outputs a line of JSON when the wake word is detected. Fields are:
keyword
- path to WAV file templatedetect_seconds
- seconds after start of program when detection occurreddetect_timestamp
- timestamp when detection occurred (usingtime.time()
)raven
probability
- detection probabilityprobability_threshold
- range of probabilities for detectiondistance
- normalized dynamic time warping distancedistance_threshold
- distance threshold used for comparisonmatches
- number of WAV templates that matchedtick
- monotonic counter incremented for each detection
Testing
You can test how well Raven works on a set of sample WAV files:
$ PATH=$PWD/bin test-raven.py --test-directory /path/to/samples/ /path/to/templates/
This will run up to 10 parallel instances of Raven (change with --test-workers
) and output a JSON report with detection information and summary statistics like:
{
"positive": [...],
"negative": [...],
"summary": {
"true_positives": 14,
"false_positives": 0,
"true_negatives": 40,
"false_negatives": 7,
"precision": 1.0,
"recall": 0.6666666666666666,
"f1_score": 0.8
}
Any additional command-line arguments are passed to Raven (e.g., --minimum-matches
).
Command-Line Interface
usage: rhasspy-wake-raven [-h]
[--probability-threshold PROBABILITY_THRESHOLD PROBABILITY_THRESHOLD]
[--distance-threshold DISTANCE_THRESHOLD]
[--minimum-matches MINIMUM_MATCHES]
[--refractory-seconds REFRACTORY_SECONDS]
[--print-all-matches]
[--window-shift-seconds WINDOW_SHIFT_SECONDS]
[--dtw-window-size DTW_WINDOW_SIZE]
[--vad-sensitivity {1,2,3}]
[--current-threshold CURRENT_THRESHOLD]
[--max-energy MAX_ENERGY]
[--max-current-ratio-threshold MAX_CURRENT_RATIO_THRESHOLD]
[--silence-method {vad_only,ratio_only,current_only,vad_and_ratio,vad_and_current,all}]
[--average-templates] [--debug]
templates [templates ...]
positional arguments:
templates Path to WAV file templates
optional arguments:
-h, --help show this help message and exit
--probability-threshold PROBABILITY_THRESHOLD PROBABILITY_THRESHOLD
Probability range where detection occurs (default:
(0.45, 0.55))
--distance-threshold DISTANCE_THRESHOLD
Normalized dynamic time warping distance threshold for
template matching (default: 0.22)
--minimum-matches MINIMUM_MATCHES
Number of templates that must match to produce output
(default: 1)
--refractory-seconds REFRACTORY_SECONDS
Seconds before wake word can be activated again
(default: 2)
--print-all-matches Print JSON for all matching templates instead of just
the first one
--window-shift-seconds WINDOW_SHIFT_SECONDS
Seconds to shift sliding time window on audio buffer
(default: 0.05)
--dtw-window-size DTW_WINDOW_SIZE
Size of band around slanted diagonal during dynamic
time warping calculation (default: 5)
--vad-sensitivity {1,2,3}
Webrtcvad VAD sensitivity (1-3)
--current-threshold CURRENT_THRESHOLD
Debiased energy threshold of current audio frame
--max-energy MAX_ENERGY
Fixed maximum energy for ratio calculation (default:
observed)
--max-current-ratio-threshold MAX_CURRENT_RATIO_THRESHOLD
Threshold of ratio between max energy and current
audio frame
--silence-method {vad_only,ratio_only,current_only,vad_and_ratio,vad_and_current,all}
Method for detecting silence
--average-templates Average wakeword templates together to reduce number
of calculations
--debug Print DEBUG messages to the console
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file rhasspy-wake-raven-0.3.0.tar.gz
.
File metadata
- Download URL: rhasspy-wake-raven-0.3.0.tar.gz
- Upload date:
- Size: 12.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc6bd9b1bffe37f0933325f336800bf6c58ad28d34f1794358e0a487c250eea8 |
|
MD5 | 2c313ab8f2a69792e19348a75b817a37 |
|
BLAKE2b-256 | bc87cb56972c6c3b4c3595a00f430321772b0479ab9a52c02e8663eb5f57cf71 |