Table logger using Rich, aimed at Pytorch Lightning logging
Project description
rich_logger
Table logger using Rich, aimed at Pytorch Lightning logging
Features
- display your training logs with pretty rich tables
- describe your fields with
goal
("higher_is_better" or "lower_is_better"),format
andname
- a field descriptor can be matched with any regex
- a field name can be computed as a regex substitution
- works in Jupyter notebooks as well as in a command line
- integrates easily with Pytorch Lightning
Demo
import time
import random
from rich_logger import RichTablePrinter
logger_fields = {
"step": {},
"(.*)_precision": {"goal": "higher_is_better", "format": "{:.4f}", "name": r"\1_p"},
"(.*)_recall": {"goal": "higher_is_better", "format": "{:.4f}", "name": r"\1_r"},
"duration": {"format": "{:.1f}", "name": "dur(s)"},
}
def optimization():
printer = RichTablePrinter(key="step", fields=logger_fields)
t = time.time()
for i in range(10):
time.sleep(random.random())
printer.log({"step": i, "task_precision": i/10. if i < 5 else 0.5-(i-5)/10.})
time.sleep(random.random())
printer.log({"step": i, "task_recall": 0. if i < 3 else (i-3)/10., "duration": time.time() - t})
t = time.time()
printer.finalize()
optimization()
Use it with PytorchLightning
from rich_logger import RichTableLogger
trainer = pl.Trainer(..., logger=[RichTableLogger(key="epoch", fields=logger_fields)])
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
rich_logger-0.1.4.tar.gz
(4.3 kB
view details)
File details
Details for the file rich_logger-0.1.4.tar.gz
.
File metadata
- Download URL: rich_logger-0.1.4.tar.gz
- Upload date:
- Size: 4.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7beda92fd0e19be52ce8cb0766d4e747d36579eadf856c904f97dab9d974dbd |
|
MD5 | f42b14dfaf894424f74ce9e69d8f67d3 |
|
BLAKE2b-256 | ed95b9707070e8b9799bd90470d4c85048787d3e9973baacf69add3fd69e8ebb |