Skip to main content

Table logger using Rich

Project description

tests pypi

rich-logger

Table logger using Rich, aimed at Pytorch Lightning logging

Features

  • display your training logs with pretty rich tables
  • describe your fields with goal ("higher_is_better" or "lower_is_better"), format and name
  • a field descriptor can be matched with any regex
  • a field name can be computed as a regex substitution
  • works in Jupyter notebooks as well as in a command line
  • integrates easily with Pytorch Lightning

Demo

from rich_logger import RichTablePrinter
import time
import random
from tqdm import trange

logger_fields = {
    "step": {},
    "(.*)_precision": {
        "goal": "higher_is_better",
        "format": "{:.4f}",
        "name": r"\1_p",
    },
    "(.*)_recall": {
        "goal": "higher_is_better",
        "format": "{:.4f}",
        "name": r"\1_r",
    },
    "duration": {"format": "{:.1f}", "name": "dur(s)"},
    ".*": True,  # Any other field must be logged at the end
}


def optimization():
    printer = RichTablePrinter(key="step", fields=logger_fields)
    printer.hijack_tqdm()

    t = time.time()
    for i in trange(10):
        time.sleep(random.random() / 3)
        printer.log(
            {
                "step": i,
                "task_precision": i / 10.0 if i < 5 else 0.5 - (i - 5) / 10.0,
            }
        )
        time.sleep(random.random() / 3)
        printer.log(
            {
                "step": i,
                "task_recall": 0.0 if i < 3 else (i - 3) / 10.0,
                "duration": time.time() - t,
            }
        )
        printer.log({"test": i})
        t = time.time()
        for j in trange(5):
            time.sleep(random.random() / 10)

    printer.finalize()


optimization()

Demo

Use it with PytorchLightning

from rich_logger import RichTableLogger

trainer = pl.Trainer(..., logger=[RichTableLogger(key="epoch", fields=logger_fields)])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rich-logger-0.3.1.tar.gz (13.7 kB view details)

Uploaded Source

Built Distribution

rich_logger-0.3.1-py3-none-any.whl (12.5 kB view details)

Uploaded Python 3

File details

Details for the file rich-logger-0.3.1.tar.gz.

File metadata

  • Download URL: rich-logger-0.3.1.tar.gz
  • Upload date:
  • Size: 13.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for rich-logger-0.3.1.tar.gz
Algorithm Hash digest
SHA256 3b49e354297086f4378cb0c9bdbbe34d4241972b6f3723d42a0e280cdb64462b
MD5 1f5810e2760b86596724ee2b1fae6aca
BLAKE2b-256 aea22f18436919a31e5fea5123098ded2d76faa8fc4201345d4d2c369bca020c

See more details on using hashes here.

Provenance

File details

Details for the file rich_logger-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: rich_logger-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 12.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for rich_logger-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 04ef8f0e22d096be992218eb594cbb2110ec3068aec77d6da2215090754197bd
MD5 53361a4ebd72f04bb80056c627ea6f13
BLAKE2b-256 22963a42c0c49fb1a72a52379681c200458caf5da18be8d21d3157dfb630cea1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page