No project description provided
Project description
Yolov5 support for Rikai
rikai-yolov5
integrates Yolov5 implemented in PyTorch with Rikai. It is based
on the packaged ultralytics/yolov5.
Notebooks
- Demo 1: Using Rikai to analyze an image from Jay Chou's Mojito.
Usage
There are two ways to use rikai-yolov5
.
Set customized_flavor
to yolov5
when logging the model, rikai will use
rikai.contrib.yolov5.codegen.generate_udf
instead of
rikai.spark.sql.codegen.pytorch.generate_udf
.
rikai.mlflow.pytorch.log_model(
model,
"model",
OUTPUT_SCHEMA,
pre_processing=pre,
post_processing=post,
registered_model_name=registered_model_name,
customized_flavor="yolov5",
)
Another way is setting the flavor in Rikai SQL:
CREATE MODEL mlflow_yolov5_m
FLAVOR yolov5
OPTIONS (
device='cpu'
)
USING 'mlflow:///{registered_model_name}';
Available Options
Name | Default Value | Description |
---|---|---|
conf_thres | 0.25 | NMS confidence threshold |
iou_thres | 0.45 | NMS IoU threshold |
max_det | 1000 | maximum number of detections per image |
image_size | 640 | Image width |
Here is a sample usage of the above options:
CREATE MODEL mlflow_yolov5_m
OPTIONS (
device='cpu',
iou_thres=0.5
)
USING 'mlflow:///{registered_model_name}';
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
rikai-yolov5-0.0.5.tar.gz
(9.8 kB
view hashes)
Built Distribution
Close
Hashes for rikai_yolov5-0.0.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0866fe821a79c35e3db5df87b051fd733db4c9d189d8d67b483c7da2f4cf4467 |
|
MD5 | 3fc2fcf2017c49ec47bdfdb3b3f82239 |
|
BLAKE2b-256 | e1dc261310840eaff7994e0cc8b34f9ba71899f1b16091ce52c3eb75226910c0 |