Skip to main content

No project description provided

Project description

Yolov5 support for Rikai

rikai-yolov5 integrates Yolov5 implemented in PyTorch with Rikai. It is based on the packaged ultralytics/yolov5.

Notebooks

  • Demo 1: Using Rikai to analyze an image from Jay Chou's Mojito.

Usage

There are two ways to use rikai-yolov5.

Set customized_flavor to yolov5 when logging the model, rikai will use rikai.contrib.yolov5.codegen.generate_udf instead of rikai.spark.sql.codegen.pytorch.generate_udf.

rikai.mlflow.pytorch.log_model(
    model,
    "model",
    OUTPUT_SCHEMA,
    pre_processing=pre,
    post_processing=post,
    registered_model_name=registered_model_name,
    customized_flavor="yolov5",
)

Another way is setting the flavor in Rikai SQL:

CREATE MODEL mlflow_yolov5_m
FLAVOR yolov5
OPTIONS (
  device='cpu'
)
USING 'mlflow:///{registered_model_name}';

Available Options

Name Default Value Description
conf_thres 0.25 NMS confidence threshold
iou_thres 0.45 NMS IoU threshold
max_det 1000 maximum number of detections per image
image_size 640 Image width

Here is a sample usage of the above options:

CREATE MODEL mlflow_yolov5_m
OPTIONS (
  device='cpu',
  iou_thres=0.5
)
USING 'mlflow:///{registered_model_name}';

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rikai-yolov5-0.0.5.tar.gz (9.8 kB view hashes)

Uploaded Source

Built Distribution

rikai_yolov5-0.0.5-py3-none-any.whl (11.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page