Skip to main content

Get mercator tile from cloud hosted dataset such as CBERS-4, Sentinel-2, Sentinel-1 and Landsat-8 AWS PDS

Project description

Rio-Tiler-PDS: A rio-tiler plugin for Public Datasets

rio-tiler-pds

A rio-tiler plugin to access and read Public hosted datasets.

Test Coverage Package version Downloads Lincense

Important This is the new module for rio-tiler missions specific (ref: https://github.com/cogeotiff/rio-tiler/issues/195)


Documentation: https://cogeotiff.github.io/rio-tiler-pds/

Source Code: https://github.com/cogeotiff/rio-tiler-pds


Installation

You can install rio-tiler-pds using pip

$ pip install -U pip
$ pip install rio-tiler-pds

or install from source:

$ git clone https://github.com/cogeotiff/rio-tiler-pds.git
$ cd rio-tiler-pds
$ pip install -U pip
$ pip install -e .

Datasets

Data Level Format Owner Region Bucket Type Link
Sentinel 2 L1C JPEG2000 Sinergise / AWS eu-central-1 Requester-pays https://registry.opendata.aws/sentinel-2/
Sentinel 2 L2A JPEG2000 Sinergise / AWS eu-central-1 Requester-pays https://registry.opendata.aws/sentinel-2/
Sentinel 2 L2A COG Digital Earth Africa / AWS us-west-2 Public https://www.digitalearthafrica.org/news/operational-and-ready-use-satellite-data-now-available-across-africa
Sentinel 1 L1C COG (Internal GCPS) Sinergise / AWS eu-central-1 Requester-pays https://registry.opendata.aws/sentinel-1/
Landsat 8 L1 GTiff (External Overviews) Planet / AWS us-west-2 Public https://registry.opendata.aws/landsat-8/
CBERS 4 L1 COG AMS Kepler / AWS us-east-1 Public https://registry.opendata.aws/cbers/

Adding more dataset:

If there is a dataset that can easily be described with a scene id please feel free to Open an Issue or a PR directly.

Warnings

Requester-pays Buckets

On AWS, sentinel2, sentinel1, and cbers dataset are stored in a requester-pays bucket, meaning the cost of GET, LIST requests will be charged to the users. For rio-tiler to work with those buckets, you'll need to set AWS_REQUEST_PAYER="requester" in your environement.

Partial reading on Cloud hosted dataset

Rio-tiler perform partial reading on local or distant dataset, which is why it will perform best on Cloud Optimized GeoTIFF (COG). It's important to note that Sentinel-2 scenes hosted on AWS are not in Cloud Optimized format but in JPEG2000. When performing partial reading of JPEG2000 dataset GDAL (rasterio backend library) will need to make a lot of GET requests and transfer a lot of data.

Ref: Do you really want people using your data blog post.

Overview

Readers

Each dataset has its own submodule (e.g sentinel2: rio_tiler_pds.sentinel.aws)

from rio_tiler_pds.landsat.aws import L8Reader
from rio_tiler_pds.sentinel.aws import S1L1CReader
from rio_tiler_pds.sentinel.aws import (
    S2L1CReader,  # JPEG2000
    S2L2AReader,  # JPEG2000
    S2L2ACOGReader,   # COG
)
from rio_tiler_pds.cbers.aws import CBERSReader

All Readers are subclass of rio_tiler.io.BaseReader and inherit its properties/methods.

Properties

  • bounds: Scene bounding box
  • minzoom: WebMercator MinZoom (e.g 7 for Landsat8)
  • maxzoom: WebMercator MaxZoom (e.g 12 for Landsat8)
  • center: Scene center
  • spatial_info: zooms, bounds and center

Methods

  • info: Returns asset's (band) simple info (e.g nodata, band_descriptions, ....)
  • stats: Returns asset's statistics (percentile, histogram, ...)
  • metadata: info + stats
  • tile: Read web mercator map tile from assets (bands)
  • part: Extract part of assets (bands)
  • preview: Returns a low resolution preview from assets (bands)
  • point: Returns asset's pixel value for a given lon,lat

Other

  • assets: List of available assets (bands) for each dataset

Scene ID

All readers take scene id as main input. The scene id is used internaly by the reader to derive the full path of the data.

e.g: Landsat on AWS

Because the Landsat AWS PDS follows a regular schema to store the data (s3://{bucket}/c1/L8/{path}/{row}/{scene}/{scene}_{asset}.TIF"), we can easily reconstruct the full asset's path by parsing the scene id.

from rio_tiler_pds.landsat.aws import L8Reader
from rio_tiler_pds.landsat.utils import sceneid_parser

sceneid_parser("LC08_L1TP_016037_20170813_20170814_01_RT")

> {
  'sensor': 'C',
  'satellite': '08',
  'processingCorrectionLevel': 'L1TP',
  'path': '016',
  'row': '037',
  'acquisitionYear': '2017',
  'acquisitionMonth': '08',
  'acquisitionDay': '13',
  'processingYear': '2017',
  'processingMonth': '08',
  'processingDay': '14',
  'collectionNumber': '01',
  'collectionCategory': 'RT',
  'scene': 'LC08_L1TP_016037_20170813_20170814_01_RT',
  'date': '2017-08-13'
}

with L8Reader("LC08_L1TP_016037_20170813_20170814_01_RT") as landsat:
    print(landsat._get_asset_url("B1"))

> s3://landsat-pds/c1/L8/016/037/LC08_L1TP_016037_20170813_20170814_01_RT/LC08_L1TP_016037_20170813_20170814_01_RT_B1.TIF

Each Dataset have their specific scene id format:

  • Landsat

  • Sentinel 1 L1C

    • link: rio_tiler_pds.sentinel.utils.s1_sceneid_parser
    • regex: ^S1[AB]_(IW)|(EW)_[A-Z]{3}[FHM]_[0-9][SA][A-Z]{2}_[0-9]{8}T[0-9]{6}_[0-9]{8}T[0-9]{6}_[0-9A-Z]{6}_[0-9A-Z]{6}_[0-9A-Z]{4}$
    • example: S1A_IW_GRDH_1SDV_20180716T004042_20180716T004107_022812_02792A_FD5B
  • Sentinel 2 JPEG200 and Sentinel 2 COG

    • link: rio_tiler_pds.sentinel.utils.s2_sceneid_parser
    • regex: ^S2[AB]_[0-9]{2}[A-Z]{3}_[0-9]{8}_[0-9]_L[0-2][A-C]$ or ^S2[AB]_L[0-2][A-C]_[0-9]{8}_[0-9]{2}[A-Z]{3}_[0-9]$
    • example: S2A_29RKH_20200219_0_L2A, S2A_L1C_20170729_19UDP_0, S2A_L2A_20170729_19UDP_0
  • CBERS

    • link: rio_tiler_pds.cbers.utils.sceneid_parser
    • regex: ^CBERS_4_\w+_[0-9]{8}_[0-9]{3}_[0-9]{3}_L[0-9]$
    • example: CBERS_4_MUX_20171121_057_094_L2, CBERS_4_AWFI_20170420_146_129_L2, CBERS_4_PAN10M_20170427_161_109_L4, CBERS_4_PAN5M_20170425_153_114_L4

File Per Band

rio-tiler-pds Readers assume that assets (eo:band) are stored in separate files.

$ aws s3 ls landsat-pds/c1/L8/013/031/LC08_L1TP_013031_20130930_20170308_01_T1/

LC08_L1TP_013031_20130930_20170308_01_T1_B1.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B10.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B11.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B2.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B3.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B4.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B5.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B6.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B7.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B8.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B9.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_BQA.TIF

When reading data or metadata, readers will merge them.

e.g

with S2L1CReader("S2A_L1C_20170729_19UDP_0") as sentinel:
    tile, mask = sentinel.tile(77, 89, 8, assets=("B01", "B02")
    assert tile.shape == (2, 256, 256)

    print(sentinel.stats(assets=("B8A", "B02")))
    > {
      'B8A': {
        'pc': [106, 9322],
        'min': 1,
        'max': 13659,
        'std': 2682.6511198930048,
        'histogram': [
          [261631, 52188, 137746, 98039, 41066, 30818, 21095, 8631, 1442, 105],
          [1.0, 1366.8, 2732.6, 4098.4, 5464.2, 6830.0, 8195.8, 9561.6, 10927.4, 12293.199999999999, 13659.0]
        ]
      },
      'B02': {
        ...
      }
    }

Changes

See CHANGES.md.

Contribution & Development

See CONTRIBUTING.md

License

See LICENSE.txt

Authors

The rio-tiler project was begun at Mapbox and has been transferred in January 2019.

See AUTHORS.txt for a listing of individual contributors.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rio-tiler-pds-0.1.0.tar.gz (18.4 kB view details)

Uploaded Source

File details

Details for the file rio-tiler-pds-0.1.0.tar.gz.

File metadata

  • Download URL: rio-tiler-pds-0.1.0.tar.gz
  • Upload date:
  • Size: 18.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for rio-tiler-pds-0.1.0.tar.gz
Algorithm Hash digest
SHA256 ddb08e5001f83ecb3ce63eb3d0aa31338b4751b1936078cd1be85a12c379235a
MD5 97d65fca988243c4322600b4efe89e99
BLAKE2b-256 32432a774c0ab4cd0988cafe11f6fbe9601c89350185ef66e763e95de266762e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page