Skip to main content

A logger based on structlog

Project description

risclog.logging

CI Status https://img.shields.io/pypi/v/risclog.logging.svg

The risclog.logging package provides a comprehensive solution for structured logging in Python applications. Risclog.logging uses structlog and logging to generate detailed and formatted log entries. The package supports both synchronous and asynchronous log messages and provides options for automatic e-mail notification of exception errors.

Features

Creating a logger

To create a logger, use the get_logger function. This function ensures that you get an instance of RiscLogger that is properly configured.

from risclog.logging import get_logger

# create logger
logger = get_logger(name='my_logger')

Configuration of the logger

The logger configuration takes place automatically when the logger instance is created using get_logger. The _configure_logger method sets up structlog and logging to provide logs with timestamps, context variables and formatting. You can customize the configuration as required.

The module is configured to automatically read the logging level from an environment variable. By default, the level is set to INFO. To adjust this, set the LOG_LEVEL environment variable:

export LOG_LEVEL=DEBUG

Use the following methods to log messages with different log levels:

  • Debug-message: logger.debug(“This is a debug message”)

  • Info-message: logger.info(“This is an info message”)

  • Warning-message: logger.warning(“This is a warning message”)

  • Error-message: logger.error(“This is an error message”)

  • Critical-message: logger.critical(“This is a critical message”)

  • Fatal-message: logger.fatal(“This is a fatal message”)

  • Exception-message: logger.exception(“This is an exception message”)

Asynchronous and synchronous log messages

The risclog.logging package supports both synchronous and asynchronous log messages. If you are working in an asynchronous environment, use the asynchronous versions of the log methods:

  • Asynchronous debug message: await logger.debug(“Async debug message”)

  • Asynchronous info message: await logger.info(“Async info message”)

  • And so on…

Decorator for logging

The decorator decorator can be used to provide methods with automatic logging and optional e-mail notification of exceptions

from risclog.logging import get_logger

logger = get_logger(name='my_logger')

@logger.decorator(send_email=True)
async def some_async_function(x, y):
    return x + y
from risclog.logging import get_logger

logger = get_logger(name='my_logger')

@logger.decorator
def some_sync_function(x, y):
    return x + y

Error handling and e-mail notification

If you set the send_email parameter to True, an email notification is automatically sent in the event of an exception. The email is sent asynchronously via a ThreadPoolExecutor and contains the exception details.

To be able to send e-mails, the following environment variables must be set!

  • ‘logging_email_smtp_user’

  • ‘logging_email_smtp_password’

  • ‘logging_email_to’

  • ‘logging_email_smtp_server’

Example

Here is a complete example showing how to use the risclog.logginng package in an application

import os
import asyncio
from risclog.logging import get_logger


os.environ["LOG_LEVEL"] = "DEBUG"

logger = get_logger("async_debug_example")


@logger.decorator(send_email=True)
async def fetch_data(url: str):
    await logger.debug(f"Start retrieving data from  {url}")
    await asyncio.sleep(2)  # Simulates a delay, such as a network request
    await logger.debug(f"Successfully retrieved data from {url}")
    return {"data": f"Sample data from {url}"}


@logger.decorator
async def main():
    url = "https://example.com"
    await logger.debug(f"Start main function with URL: {url}")
    data = await fetch_data(url)
    await logger.debug(f"Data received: {data}")


if __name__ == "__main__":
    logger.info("Start main function")
    asyncio.run(main())

output:

2024-08-05 11:38:51 [info     ] [async_debug_example] __id=4378622064 __sender=inline message=Start main function
2024-08-05 11:38:51 [info     ] [async_debug_example] __id=4384943584 __sender=async_logging_decorator _function=main _script=example.py message=Method "main" called with no arguments.
2024-08-05 11:38:51 [debug    ] [async_debug_example] __id=4378552584 __sender=inline _function=main _script=example.py message=Start main function with URL: https://example.com
2024-08-05 11:38:51 [info     ] [async_debug_example] __id=4384943744 __sender=async_logging_decorator _function=fetch_data _script=example.py message=Method called: "fetch_data" with: "{'arg_0': 'https://example.com'}"
2024-08-05 11:38:51 [debug    ] [async_debug_example] __id=4366292144 __sender=inline _function=fetch_data _script=example.py message=Start retrieving data from  https://example.com
2024-08-05 11:38:53 [debug    ] [async_debug_example] __id=4366292144 __sender=inline _function=fetch_data _script=example.py message=Successfully retrieved data from https://example.com
2024-08-05 11:38:53 [info     ] [async_debug_example] __id=4384943744 __sender=async_logging_decorator _function=fetch_data _script=example.py message=Method "fetch_data" returned: "{'data': 'Sample data from https://example.com'}"
2024-08-05 11:38:53 [debug    ] [async_debug_example] __id=4378552584 __sender=inline message=Data received: {'data': 'Sample data from https://example.com'}
2024-08-05 11:38:53 [info     ] [async_debug_example] __id=4384943584 __sender=async_logging_decorator message=Method "main" returned: "None"

Run tests:

$ ./pytest

Credits

This package was created with Cookiecutter and the risclog-solution/risclog-cookiecutter-pypackage project template.

This package uses AppEnv for running tests inside this package.

Change log for risclog.logging

1.2.1 (2024-09-20)

  • forward exceptions

1.2.0 (2024-09-19)

  • rename email environments

1.1.0 (2024-08-27)

  • Allow logging with multiple loggers in a single module.

1.0.2 (2024-08-06)

  • Fix CI status badge.

1.0.1 (2024-08-06)

  • Fix classifiers and README structure.

1.0 (2024-08-06)

  • initial release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

risclog.logging-1.2.1.tar.gz (18.3 kB view details)

Uploaded Source

Built Distribution

risclog.logging-1.2.1-py3-none-any.whl (11.4 kB view details)

Uploaded Python 3

File details

Details for the file risclog.logging-1.2.1.tar.gz.

File metadata

  • Download URL: risclog.logging-1.2.1.tar.gz
  • Upload date:
  • Size: 18.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for risclog.logging-1.2.1.tar.gz
Algorithm Hash digest
SHA256 65e9a01949ef08eba68f43de4318eb761a1409dfccaba9dbdf241e413aef8fb7
MD5 48251b4d2c21c5ba3a49f220f1398226
BLAKE2b-256 c63208d2165a4d499419ae74cac5b321b085296e2d5f41ec15d717dec4dc1e94

See more details on using hashes here.

File details

Details for the file risclog.logging-1.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for risclog.logging-1.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a75bb87bab6a5c2ad70687273db6de155fc3a8d18be1b9e24773458dd7ba85d7
MD5 cc11c63e373d0906a808f2fbbb470e24
BLAKE2b-256 1a42f654b47c96097414822c5d52a034913ad58abaec819e7ccfb347ab99c7bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page